欧洲亚式期权的快速定价与精度保证
在金融领域,准确快速地对欧洲亚式期权进行定价是一个重要的问题。本文将介绍一些用于估计欧洲亚式期权价格的方法,包括结合测度集中结果与蒙特卡罗模拟的方法,以及基于递归分桶的方案。
1. 蒙特卡罗模拟与解析误差界
传统的期权定价模拟方法,如控制变量法和对偶变量法,在估计期权价格时存在一定局限性,它们没有已知的解析误差界。本文采用测度集中结果与蒙特卡罗模拟相结合的方法,来估计欧洲亚式看涨期权的价格,并推导该估计的解析误差界。误差界与期权的执行价格 (X) 和标的股票的最大波动率 (\sigma_{max}) 有关。
1.1 单股票情形的解析误差界
设 (C = e^{E(\ln T_n)}),当 ((n + 1)X/C) “较小” 时,(E[(T_n - (n + 1)X)^+]) 接近 (E(T_n - (n + 1)X) = E(T_n) - (n + 1)X)。由于 (E(T_n)) 有闭式公式,所以可以精确计算 (E(T_n - (n + 1)X)),并将其作为 (E[(T_n - (n + 1)X)^+]) 的估计值。当 ((n + 1)X/C) 不小的时候,((T_n - (n + 1)X)^+) 的方差可以有上界,此时使用蒙特卡罗模拟来估计其期望,并保证误差有界。
- 引理 1 :对于任意 (\lambda > 0),有 (Pr{T_n \leq Ce^{-\sigma\lambda} \text{ 或 } T_n \geq Ce^{\sigma\lambda}} \leq 2e^{-\lambda^2/2}),其中 (\sigma) 是股票的