图划分问题的下界与精确算法
1. 定义
图划分问题有几种稍有不同的定义。这里讨论的是一个带有顶点和边权重的图,给定划分数量和每个划分的最大规模。具体定义如下:
- 图划分问题 :给定无向图 (G = (V, E)),顶点权重 (g: V \to \mathbb{N}),边权重 (f: E \to \mathbb{N}),划分数量 (p \in \mathbb{N}),以及每个划分的最大规模 (M \in \mathbb{N})。问题是将顶点 (V) 划分为 (p) 个不相交的集合 (V_1, \ldots, V_p),使得 (\forall i: \sum_{v \in V_i} g(v) \leq M),并最小化割边大小 (CutSize),其中 (CutSize(V_1, \ldots, V_p) := \sum_{v \in V_i, w \in V_j, i < j} f({v, w}))。当 (p = 2) 时,就是著名的二分问题。通常要求划分大小相等,即 (M = \lceil\frac{N}{p}\rceil),其中 (n = |V|),(N = \sum_{v \in V} g(v))。
- 多商品流问题 :给定无向图 (G = (V, E)),边权重 (f: E \to \mathbb{N}),对于每对 ((v, w) \in V^2),商品从顶点 (v) 流向顶点 (w) 的大小 (d_{v,w} \in \mathbb{R} {\geq 0}),且 (\forall v \in V: d {v,v} = 0)。寻找一个流 (h: V \times V \times V \to