无短环的循环覆盖计算:算法与复杂度分析
在图论和算法设计领域,循环覆盖问题一直是研究的热点。循环覆盖是指用一组不相交的循环来覆盖图中的所有节点。本文将深入探讨无短环的循环覆盖问题,包括计算最优 4 - 循环覆盖的算法、问题的复杂度以及近似算法的可行性。
计算最优 4 - 循环覆盖
为了计算最优的 4 - 循环覆盖,我们采用了 Hartvigsen 的多项式时间算法。该算法的核心思想是直接寻找最小权重的 4 - 循环覆盖 (C),而不是从最小权重的 2 - 循环覆盖开始。这样做的好处是可以得到更优的不等式 (n_2 \geq 4 \cdot |C_{iso}|),其中 (n_2) 表示某种特定的节点数量,(|C_{iso}|) 表示孤立循环的数量。
在收集辅助边时,需要更加谨慎。对于每个权重为 2 的边,我们现在只能额外花费 1/6 的成本,而不是之前的 1/3。为了便于计算,我们对计算得到的 4 - 循环覆盖 (C) 进行了归一化处理:
1. 假设只有一个循环 (t) 包含权重为 2 的边,因为可以无成本地合并两个这样的循环。
2. 对于循环 (t) 中的每个权重为 2 的边 ({u, v}),假设图 (G) 中不存在与不同循环的某个节点 (x) 相连的权重为 1 的边 ({v, x}),否则可以无成本地将该循环与 (t) 合并。
通过这些处理,我们可以将需要额外收取 1/6 成本的节点数量限制为 (n - n_2 - \ell),而不是 (n - n_2)。最终,总权重满足 (w(C_{apx}) \leq \frac{7}{6}n + \frac{5}{6}\ell + \frac{1}{3}|C_{iso}| \leq \frac{7