无短环的环覆盖计算算法解析
1. 背景知识
在图论中,图的环覆盖是一个生成子图,其中图的每个节点恰好是一个简单环的一部分。而 k - 环覆盖则是指每个环的长度至少为 k 的环覆盖。对于有向图和无向图,判断其是否存在 k - 环覆盖的问题分别称为 k - DCC 和 k - UCC。当图的边权为 1 或 2 时,寻找最小权 k - 环覆盖的问题则被称为 Min - k - DCC 和 Min - k - UCC。这些问题在图论研究中具有重要意义,并且与旅行商问题、节点不相交路径打包问题等密切相关。
2. 过往研究成果
- 有向图相关问题 :
- 寻找有向图的 2 - 环覆盖(2 - DCC)和最小权 2 - 环覆盖(Min - 2 - DCC)问题可以通过归约为二分匹配问题在多项式时间内解决。但对于 k ≥ 3 的情况,此前并无相关研究成果。
- 无向图相关问题 :
- 寻找无向图的 3 - 环覆盖(3 - UCC)问题可以利用 Tutte 归约为经典的无向图完美匹配问题,该问题可在多项式时间内解决,因此 3 - UCC 和 Min - 3 - UCC 都能在多项式时间内求解。
- Hartvigsen 设计了用于解决 4 - UCC 的多项式时间算法,该算法也适用于 Min - 4 - UCC。此外,他还给出了在权重为 1 的边构成二分图的情况下,计算最小权 5 - 环覆盖的多项式时间算法。
- 当 k ≥ 6 时,k - UCC 问题被证明