多车辆调度与最短路径算法解析
多车辆调度问题
在多车辆调度问题(PATH - MVSP)中,目标是为 $m$ 辆车安排服务 $n$ 个作业的最优调度,以最小化所有作业的最大完成时间。该问题具有很高的复杂度,对于任意固定的 $m \geq 2$ 是 NP 难问题,当 $m$ 任意时是强 NP 难问题,即使只有一辆车($m = 1$)且指定初始位置时,问题依然是 NP 难的。
情况分析
在对车辆调度的情况分析中,考虑了 $\tau_{k - 1} \in [u_{2a(k) - 1}, u_{2a(k)})$ 和 $\tau_{k} \in [u_{2b(k) - 1}, u_{2b(k)})$ 的情况。假设 $h_{a(k)} \geq h_{b(k)}$,$\tau_{k - 1}$ 距 $u_{2a(k) - 1}$ 的距离小于 $w_A(u_{2a(k) - 1}, u_{2a(k)})/2$(即 $h_{a(k)}/2$),$\tau_{k}$ 距 $u_{2b(k) - 1}$ 的距离大于 $w_A(u_{2b(k) - 1}, u_{2b(k)})/2$(即 $h_{b(k)}/2$)。由此可得 $W(a(k), b(k)) + H(a(k), b(k)) = d(u_{2a(k) - 1}, u_{2b(k)}) \leq h_{a(k)}/2 + \gamma + h_{b(k)}/2$。
对于作业序列 $\pi[k] = (a(k), a(k) + 1, \ldots, b(k))$,分两种情况讨论:
- 若 $r_{a(k)} + h_{a(k)} \geq r_{max}(a(k), b(k))$,则 $C(\pi[k]) \leq r