机器学习之监督学习-分类模型决策树的基本概念

本文介绍了决策树这一监督学习中的分类模型,强调其作为解释性强的工具在数据分析中的作用。通过相亲和动物分类的例子展示了决策树的构造过程,并用小明打球的案例说明如何将数据转化为决策树规则。决策树的目标是找到与训练集矛盾最小的规则集合,常用算法包括ID3、C4.5和CART。文章提供了进一步学习的资源,帮助读者深入理解决策树。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习之监督学习-分类模型决策树的基本概念

决策树是一种简单高效且具有强解释性的模型,广泛应用于数据分析领域,其本质是一棵自上而下的由多个判断节点组成的树。

我们看看如下图的两棵决策树,第一棵是相亲的决策树,叶子节点是决策结果,结果分为两类,即“见”或者“不见”。第二个决策树是动物分类的决策树,第二个决策树不是二分,而是多分,但是仍是多个离散值,属于分类问题。
在这里插入图片描述
下面我们看一张统计表,从表中我们可以看到对应日期时候小明是否去打球了,但是我们能总结预测出什么情况下小明会去打球吗,从表中我们好像并不太能看出。
在这里插入图片描述
下面我们把表格转换成决策树,我们会发现,阴天的时候,小明会去打球,若是晴天,当湿度正常的时候小明会去打球,若是雨天,当风弱的时候,小明会去打球。
在这里插入图片描述
决策树可以看作是一个if-then规则的集合,由决策树的根节点到叶节点的每一条路径构建一条规则,路径上内部节点的特征对应着规则的条件,叶节点对应规则的结论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nuist__NJUPT

给个鼓励吧,谢谢你

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值