机器学习之监督学习-分类模型决策树的基本概念
决策树是一种简单高效且具有强解释性的模型,广泛应用于数据分析领域,其本质是一棵自上而下的由多个判断节点组成的树。
我们看看如下图的两棵决策树,第一棵是相亲的决策树,叶子节点是决策结果,结果分为两类,即“见”或者“不见”。第二个决策树是动物分类的决策树,第二个决策树不是二分,而是多分,但是仍是多个离散值,属于分类问题。
下面我们看一张统计表,从表中我们可以看到对应日期时候小明是否去打球了,但是我们能总结预测出什么情况下小明会去打球吗,从表中我们好像并不太能看出。
下面我们把表格转换成决策树,我们会发现,阴天的时候,小明会去打球,若是晴天,当湿度正常的时候小明会去打球,若是雨天,当风弱的时候,小明会去打球。
决策树可以看作是一个if-then规则的集合,由决策树的根节点到叶节点的每一条路径构建一条规则,路径上内部节点的特征对应着规则的条件,叶节点对应规则的结论。