动态规划(11):数位动态规划

引言

数位动态规划(Digit DP)专门用于解决与数字的位数相关的计数问题。
当我们需要统计满足特定条件的数字个数,尤其是在一个较大范围内(如1到10^9)时,数位DP往往能提供优雅而高效的解决方案。

数位DP的基本思想

什么是数位动态规划

数位动态规划(Digit DP)是动态规划的一个分支,专门用于解决与数字的位数相关的计数问题。所谓"数位",是指数字的个位、十位、百位等每一位。数位DP通常用于解决以下类型的问题:

  1. 区间计数问题:给定区间[L, R],计算区间内满足特定条件的数字个数。
  2. 特定数字问题:计算满足特定数字条件(如包含特定数字、数位和等)的数量。
  3. 数字特征统计:统计数字的特定特征(如数位和、数位积等)。

数位DP的核心思想是将数字按位分解,然后从高位到低位依次考虑每一位的可能取值,并通过动态规划的方式累计结果。

为什么需要数位DP

当我们需要在一个较大范围内统计满足特定条件的数字时,暴力枚举显然是不可行的。例如,如果要统计1到10^9之间满足某条件的数字个数,直接枚举将会超时。

数位DP通过巧妙地利用数字的位结构,将问题分解为更小的子问题,从而大大减少计算量。它的优势在于:

  1. 高效处理大范围:能够高效处理范围很大的数字区间。
  2. 灵活适应条件:可以灵活适应各种与数位相关的条件。
  3. 状态转移清晰:通过明确的状态定义和转移方程,使问题求解变得清晰。

数位DP的基本框架

数位DP的基本框架通常包括以下几个步骤:

  1. 将数字转换为数位表示:将给定的数字转换为其各个数位的表示形式,通常是从高位到低位的数组。
  2. 定义状态:根据问题特点定义状态,通常包括当前处理到的位置、前面已经确定的数字状态等。
  3. 设计状态转移方程:根据问题条件,设计从前一状态到当前状态的转移方程。
  4. 处理数位限制:考虑数位上界的限制,确保生成的数字不超过给定范围。
  5. 计算最终结果:根据状态转移方程计算最终结果。

在实现上,数位DP通常采用记忆化搜索的方式,这样可以避免重复计算,提高效率。

数位统计问题的解决方法

状态定义与转移

在数位DP中,状态定义是解决问题的关键。常见的状态包括:

  1. pos:当前处理的位置(从高位到低位)。
  2. limit:当前位是否受到上界限制。
  3. lead:当前是否有前导零。
  4. state:根据具体问题定义的状态,如已经使用的数字集合、当前的数位和等。

状态转移方程根据具体问题而定,但通常遵循以下模式:

dp[pos][state][limit][lead] = sum(dp[pos+1][new_state][new_limit][new_lead])

其中,new_statenew_limitnew_lead是根据当前位选择的数字计算得到的新状态。

记忆化搜索实现

数位DP通常使用记忆化搜索实现,基本框架如下:

def digit_dp(n):
    # 将数字转换为数位表示
    digits = []
    while n > 0:
        digits.append(n % 10)
        n //= 10
    digits.reverse()  # 从高位到低位
    
    @lru_cache(maxsize=None)
    def dfs(pos, state, limit, lead):
        # 递归终止条件
        if pos == len(digits):
            return 1 if valid(state) else 0
        
        res = 0
        # 计算当前位可以填的上限
        up = digits[pos] if limit else 9
        
        # 枚举当前位可以填的数字
        for d in range(up + 1):
            # 计算新的状态
            new_state = update_state(state, d, lead)
            # 计算是否仍有上限限制
            new_limit = limit and (d == digits[pos])
            # 计算是否仍有前导零
            new_lead = lead and (d == 0)
            
            # 递归计算结果
            res += dfs(pos + 1, new_state, new_limit, new_lead)
        
        return res
    
    return dfs(0, initial_state, True, True)

这个框架可以根据具体问题进行调整,例如添加或删除状态,修改状态转移逻辑等。

处理区间问题

对于区间[L, R]的问题,我们可以使用前缀和的思想,即计算[1, R]的结果减去[1, L-1]的结果:

def count_in_range(L, R):
    return count(R) - count
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员查理

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值