【2025WACV-目标检测方向】

1. ​研究背景与动机

边缘检测是计算机视觉的基础任务,用于保留关键语义信息并抑制纹理噪声,广泛应用于图像检索、显著目标检测和语义分割等下游任务。传统方法(如Canny)依赖局部线索,难以捕获高级语义信息。深度学习模型(如CNN)通过卷积和池化块扩展感受野,但有效感受野小于理论值,限制了上下文建模能力。Transformer模型通过自注意力机制改善了全局依赖性建模,但计算成本高昂,尤其对实时应用和边缘设备不友好。此外,多粒度边缘生成(即不同粗细程度的边缘)现有方法(如UAED和MuGE)依赖多标签数据(多个标注者),限制了其在单标签数据集的应用。

EDMB的提出动机是:

  • 效率问题​:Transformer的计算开销大,而Vision Mamba能高效建模长距离依赖(通过状态空间模型),计算成本更低。
  • 多粒度需求​:不同任务需要不同粒度的边缘(如粗粒度用于分割,细粒度用于检索),但现有方法无法在单标签数据集生成多粒度边缘。
  • 细粒度线索缺失​:普通Mamba忽略局部细节,而边缘检测需兼顾全局语义和局部精度。

文档强调EDMB是首个基于Mamba的边缘检测器,解决了上述问题。


2. ​方法框架:EDMB的整体架构

EDMB采用全局-局部编码器架构,结合可学习高斯分布解码器,高效生成多粒度边缘。整体框架如图1所示:

### 目标检测中的知识蒸馏方法实现与应用 #### 背景概述 在计算机视觉领域,尤其是目标检测任务中,模型压缩和加速是一个重要研究方向。通过知识蒸馏技术可以有效地将大型复杂网络的知识迁移到小型轻量级的学生网络上,在保持较高精度的同时显著减少计算资源消耗。 #### 方法原理 知识蒸馏的核心在于利用教师模型产生的软标签来指导学生模型的学习过程。对于目标检测而言,除了传统的分类损失外,还引入了边界框回归损失作为额外监督信号[^1]。具体来说: - **分类分支**:采用交叉熵损失函数衡量预测类别分布与真实标签之间的差异; - **定位分支**:使用平滑L1范数或其他距离度量方式评估预测框坐标同实际位置间的偏差程度; 为了更高效地传递不同类型的语义信息,有研究表明可以从特征层面入手,即提取特征图中的分类知识与本地化知识并将其解耦为两个独立模块——分类头与本地化头来进行针对性训练[^3]。 此外,针对特定应用场景下的优化策略也不断涌现。例如WACV 2022提出的Label Assignment Distillation方法就旨在改善候选区域分配机制从而提升整体效果。 #### 实现细节 以下是基于PyTorch框架的一个简单示例代码片段展示如何构建基本的知识蒸馏流程: ```python import torch.nn.functional as F def distill_loss(student_output, teacher_output, targets): cls_loss = F.cross_entropy(student_output['cls'], targets[:, :4].long()) # 对于边界框回归部分采用平滑 L1 损失 reg_loss = smooth_l1_loss( student_output['reg'], targets[:, 4:] ) total_loss = cls_loss + reg_loss return total_loss ``` 此段代码定义了一个用于计算总损失值的`distill_loss()`函数,它接收来自学生模型以及教师模型输出的结果还有真实的标注数据作为输入参数,并返回最终组合后的损失项供后续反向传播更新权重所用。 #### 应用场景 目前该类技术已被广泛应用于多种实际项目当中,比如自动驾驶汽车感知系统、安防监控视频分析平台等对实时性和功耗敏感的任务环境之中。通过对预训练好的高性能大模型实施有效的迁移学习操作,可以在不牺牲太多识别准确性前提下大幅降低硬件成本开销。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值