JDK7和JDK8中HashMap的结构优化

本文详细解析了JDK8中HashMap的优化措施,包括引入红黑树解决链表长度过长的问题,以及扩容和rehash的过程。这些改进显著提高了极端情况下的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

JDK8对HashMap做了较大的改动和优化,在以前的HashMap上,是通过hash映射+装填因子来实现的,每个桶都接了相应的链表,当hash映射不均匀,大量key都映射到同一个桶下的链表里,这时候,元素数量到达临界值时,此时map中元素较多,发生冲突的可能性较大,此时rehash。

在7下的实现:有几个关键的变量:

threshold:临界值,即map的capacity * loadFactor的值,每次扩容时capacity 2倍后的值

loadFactorL:0.75f装填因子

size:实际key-value元素个数

capacity:map的Entry数组大小,初始化为16

简单说下实现,初始化map的时候,Entry[] table 数组的大小为16,装填因子为0.75f,在put对象的时候,首先计算k的hash值,然后根据hash值得到所在桶的数组下标,映射方式为 i = hash&(table.length-1),得到下标后,遍历对应桶数组的链表,如果相同则修改并返回old值,不存在同一个对象,则创建新的Entry,在创建之前,会进行一下判断:

public V put(K key, V value) {
        if (key == null)
            return putForNullKey(value);
        int hash = hash(key);
        int i = indexFor(hash, table.length);
        for (Entry<K, V> e = table[i]; e != null; e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }

        modCount++;
        addEntry(hash, key, value, i);
        return null;
    }
    void addEntry(int hash, K key, V value, int bucketIndex) {
        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }

        createEntry(hash, key, value, bucketIndex);
   

先判断所有元素个数是否已经达到临界值(capacity * loadFactor),若已达临界值,则将table的容量扩大两倍(两倍时,hash需要移动的数量最少),然后rehash(头插法),之后将目的元素采用头插法放入到链表中(即桶数组下标为i的位置),使用头插法是为了避免再次遍历链表。这种方法,避免了hash桶上的链表过长的情况,即极端情况下,hash冲突映射到同一个桶。


以上图片是对7中HashMap的简单描述,这里只是形象的描述,并不准确,hash桶数量以及rehash后的位置并没有计算,这里只是形象的说明一下。

我们继续看下JDK8对HasnMap的改进,其中,几个重要的因子还是一样的。只是对HashMap的结构进行了改进。简单的来说,就是新增了TreeNode节点类型,在链表长度增加到一定值时,将链表改为红黑数结构(这种优化对极端情况下的复杂度,为OLogN)。

新增属性有:

    /**
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2 and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     */
    static final int UNTREEIFY_THRESHOLD = 6;
从注释我们可以看出,这两个因素决定了何时将链表rehash为红黑树。

我们先从构造函数看起。

    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
这里只是初始化了0.75f的装填因子,而其余一些初始化信息会首次在put时完成。

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }


 final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }


首次put时,Entry[] table数组为null,初始化此数组为16的长度,然后将临界值threshold设置为16*0.75f = 12,每次两倍扩展数组时,都会重新计算threshold的值。完成这些初始化后,会计算出hash值,然后和7中一样,hash&(table.length-1)就是数组下标,然后创建链表节点,并将引用赋值给table[i]。之后每次pput节点时,若目标数组i为空,则直接创建新节点,并将引用赋值给table[i],否则,若table[i]和put节点的hash和对象都相同则直接 替换,若不满足,则查看table[i]是哪种节点类型,若是树节点,则调用table[i]的
putTreeVal方法将节点插入树中,不是树节点则是链表节点,遍历table[i]所指向的链表,当数量到达8的时候,将链表修改为红黑树并将节点插入,否则,链表数量尚未达到8,不需要重构为红黑树,则将节点插在链表尾部。
if (++size > threshold)
            resize();

最后校验所有元素数量是否大于临界值,是的话则resize,将数组扩展为2。将链表优化为树,在最坏的情况下,将7版本中HashMap的复杂度从O(n)优化为了O(logN)。

从网上找到了一张JDK8版本的HashMap的图片,放在这里算是补充说明吧。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值