1、改进高斯-伯努利受限玻尔兹曼机学习方法

改进高斯-伯努利受限玻尔兹曼机学习方法

1. 引言

受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)是一种广泛应用于无监督学习领域的生成随机神经网络模型。传统的RBM通常假设每个神经元的状态是二进制的,这限制了其应用范围。为了克服这一局限,研究人员引入了高斯-伯努利受限玻尔兹曼机(Gaussian-Bernoulli Restricted Boltzmann Machine, GBRBM),它将可见层神经元替换为高斯分布的神经元,从而可以处理连续型数据。然而,GBRBM的训练过程较为复杂,容易遇到收敛慢和参数学习不稳定等问题。

在这篇文章中,我们将探讨如何通过改进能量函数的参数化、采用并行退火学习和平滑自适应学习率等方法,提升GBRBM的训练效果。这些改进不仅提高了模型的稳定性,还显著减少了训练时间,使GBRBM在处理高维数据时更加高效。

2. GBRBM的基本原理

GBRBM的结构由两层组成:一层是可见层(visible layer),另一层是隐藏层(hidden layer)。可见层中的神经元遵循高斯分布,而隐藏层中的神经元保持二进制状态。GBRBM的能量函数定义如下:

[ E(v, h|\theta) = \sum_{i=1}^{n_v} \frac{(v_i - b_i)^2}{2\sigma_i^2} - \sum_{i=1}^{n_v} \sum_{j=1}^{n_h} \frac{W_{ij} h_j v_i}{\sigma_i} - \sum_{j=1}^{n_h} c_j h_j ]

其中,( v ) 表示可见层神经元的状态,( h ) 表示隐藏层神经元的状态,(

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值