- 博客(9)
- 收藏
- 关注
原创 NumPy入门完全解读(中)
本文介绍了NumPy创建多维数组的多种方法,主要包括三类:从现有数据创建(如np.asarray()、np.copy())、从形状或值创建(如np.zeros()、np.ones()、np.eye())以及从数值范围创建(如np.linspace()、np.logspace())。文章详细说明了各函数的参数用法及区别,例如np.asarray()与np.array()的内存差异,np.linspace()的间隔计算方式等。通过代码示例展示了如何灵活创建不同形状和类型的数组,为NumPy的基础操作提供了实用指
2025-08-19 10:29:43
666
原创 采样——打破连续与离散的界限
本文详细推导了采样定理,阐述了连续信号通过周期采样转换为离散信号的过程。在频域分析中,采样会导致原始频谱周期性搬移,当采样频率满足奈奎斯特条件(Ωₛ≥2Ωₙ)时,频谱不会混叠。通过低通滤波可恢复原始信号,并建立了连续与离散傅里叶变换的数学联系。文末附有展现频谱搬移的MATLAB代码。 核心结论:采样频率必须大于信号最高频率的两倍才能避免混叠(奈奎斯特采样定理)。推导过程通过脉冲调制、傅里叶变换和卷积运算,揭示了采样在时域和频域的数学本质。
2025-08-19 09:24:38
422
原创 NumPy入门完全解读(上)
本文介绍了NumPy中最基本的操作——创建多维数组,重点讲解了从现有数据创建数组的方法。文章首先强调了学习NumPy的重要性,指出它是理解PyTorch等深度学习框架的基础。然后详细说明了使用np.array()函数创建多维数组的三种方式,特别是从现有数据(如列表、元组等)创建数组的方法。通过示例代码展示了如何创建0维到4维的数组,并解释了数组形状(shape)和维度(ndim)等关键属性。文章还提供了Matlab可视化代码来帮助理解多维数组的结构,最后预告后续将介绍其他创建数组的方式和机器学习应用。
2025-08-18 11:26:00
667
原创 离散系统傅里叶变换的常用结论证明
本文介绍了离散系统傅里叶变换的三个重要结论:1)时域卷积对应频域相乘(公式1-3);2)时域相乘对应频域卷积(公式4-6);3)帕塞瓦尔定理(公式7)及其广义形式,证明信号能量在变换域保持不变。文末提供了MATLAB卷积运算演示程序,通过动画展示离散信号卷积过程(翻转、平移、相乘、累加),并以方波信号为例给出运行结果图。该程序直观呈现了卷积运算的步骤与结果。
2025-08-15 10:01:50
1004
原创 正则表达式之特殊字符辨析(下)
本文是正则表达式特殊字符辨析的续篇,重点讲解后3组元字符的用法。首先汇总了各类元字符的功能描述,包括\d、\s、\w等常用字符类。通过Python代码示例详细演示了[]字符集和()分组的实际应用,特别说明了非捕获分组(?:...)的用法。文章还提供了邮箱验证的正则表达式实例,解析了其组成结构。最后指出基础正则知识已覆盖大多数字符匹配需求,并附上相关学习资料的链接。全文以代码示例为主,辅以简明注释,帮助读者理解正则表达式在实际文本处理中的应用。
2025-08-14 17:51:23
970
原创 最常见的低通(高通)滤波器
本文通过两个离散时间系统实例,分析了低通和高通滤波器的原理。首先推导累加器的传递函数,证明其具有低通特性,输入高频信号会在累加过程中相互抵消;随后分析差分器,通过频域变换证明其高通特性,差分运算能增强高频分量。两种运算的频谱分析显示:累加器在低频段幅值大,差分器则高频段幅值增强。文章强调离散时间信号处理是数字信号处理的基础,理解这些概念对掌握采样、频域分析等关键技术至关重要。
2025-08-14 09:26:09
953
原创 正则表达式之特殊字符辨析(上)
本文系统介绍了正则表达式中的8组元字符及其用法:1).匹配除换行符外的任意字符;2)^匹配字符串开头;3)$匹配字符串结尾;4)*、+、?分别实现零到多、一到多和零到一的匹配;5)在重复字符后加?实现非贪婪匹配;6){m,n}限定匹配次数;7)|实现多选一匹配;8)\作为转义字符或特殊匹配。文章通过Python代码示例演示了各元字符的具体应用,为后续实现邮箱验证等正则表达式应用打下基础。
2025-08-13 18:26:19
690
原创 LTI系统入门
本文探讨了傅里叶级数在信号处理中的推导过程,重点分析了线性时不变系统(LTI)的特性。文章首先推荐了张颢的数字信号处理课程,随后详细阐释了LTI系统的线性与时不变特性。通过类比矩阵特征向量,提出了系统"不变输入"的概念,并推导出a^n形式的解。进一步将解推广到e^(jωn)形式,引出离散时间傅里叶变换(DTFT)的应用。最后展示了如何利用DTFT通过频域变换计算LTI系统的输出信号,实现了从时域到频域再到时域的转换过程。这一推导过程体现了信号处理中"简单、快速推进、广泛应用&q
2025-08-12 12:53:26
695
原创 正则表达式之贪婪匹配与非贪婪匹配
本文介绍了Python中正则表达式的贪婪与非贪婪匹配。主要内容包括:1)推荐Python正则表达式学习资源;2)解释正则表达式的基本概念,特殊字符的使用规则;3)重点讲解贪婪与非贪婪匹配的区别,说明在重复匹配时使用"?"实现非贪婪匹配;4)通过示例代码演示非贪婪匹配的实际应用。文章强调贪婪匹配针对的是前面的字符或字符集,并提供了简单的匹配案例展示非贪婪匹配的结果。
2025-08-11 18:49:47
281
数据集的获取方式以及制作数据集的方法
2024-12-31
TA创建的收藏夹 TA关注的收藏夹
TA关注的人