自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(87)
  • 收藏
  • 关注

原创 想象力画笔——变分自编码器如何教会机器创造

而今天的主角 **变分自编码器(VAE)**,正是实现这种奇迹的奠基性技术。- **神操作**:将采样改写为 **`样本 = μ + σ × ε`**(ε来自标准正态分布)。> **类比**:调色时先定主色(μ),再按配方(σ)加入随机颜料(ε),而非胡乱混合。> **金句**:**KL损失是防抄袭系统——阻止AI复制粘贴,逼它总结通用规律。> **类比**:设计师记录“客厅主色调是米白色(μ),允许深浅偏差(σ)”。- **核心痛点**:**如何让AI理解事物本质规律,并自由创造新样本?

2025-08-04 06:53:13 142

原创 让AI学会“想象”:变分自编码器的创造之旅

*最令人惊叹的是**:VAE生成的结果**既多样又合理**。- **VAE**:将图片映射为**概率分布**(如“猫=服从均值[0.2, 1.7]、方差[0.1, 0.3]的正态分布”)。- **KL散度损失**:强制隐变量分布**逼近标准正态分布**(防止模型把所有图片都映射到同一个点)。3. **异常检测**:在工业质检中,VAE学会“正常零件”的分布,自动识别缺陷品(不符合分布的数据);- **传统自编码器**:将图片压缩为**固定向量**(如“猫=[0.2, 1.7, -0.5]”)。

2025-08-03 06:52:03 152

原创 当AI第一次“看见”世界:深度强化学习的雅达利革命

在DQN之前,AI玩游戏需要人类“手把手教”:工程师必须手动设计游戏特征(比如“球的位置”“敌人距离”),再将特征输入传统算法。这就像蒙住一个人的眼睛,只允许他用手摸棋子下棋——**失去视觉,就失去了直觉**。**如何让AI从流动的像素中自学成材?DQN的答案既大胆又简洁:**用卷积神经网络(CNN)模拟人眼,用Q-learning模拟人脑**。:将游戏经历(状态、动作、奖励、下一帧)存入“记忆库”,训练时**随机抽取旧记忆学习**。:贝尔曼方程——**当前动作的价值 = 即时奖励 + 未来最大价值**。

2025-08-02 07:15:53 308

原创 点燃AI革命的导火索:ImageNet大赛与AlexNet的传奇故事

同学们,AlexNet的传奇告诉我们:**技术革命的引爆点,往往不是高不可攀的理论,而是敢于用新工具解决老问题的勇气**。- **AlexNet方案**:采用**ReLU函数(f(x)=max(0,x))**,计算速度提升6倍!- **AlexNet创新**:让池化窗口**重叠滑动**,提升特征鲁棒性,缓解过拟合。- **破局关键**:首次使用**2块NVIDIA GTX 580显卡并行训练**。AlexNet的价值远超一场比赛。- **意义**:5天完成训练(CPU需数月),打开了深度学习工业化的闸门。

2025-08-01 06:40:45 228

原创 关于机器学习你需要知道的几件有用的事:避开陷阱的实战指南

**相关性 ≠ 因果性:** 机器学习擅长发现关联,但**不能直接证明因果关系**。* **特征工程是魔法:** **“Garbage in, garbage out”**。* **但:** 如果问题本身非常复杂(如图像识别、自然语言处理),且**数据充足**,更复杂的模型(如深度学习)**几乎总是**能获得更高的精度。* **测试集泄露:** 任何基于测试集信息调整模型的操作(如用测试集选特征、调参)都会导致**对测试集的过拟合**,使评估结果虚假乐观。* **评估:** 如何衡量模型的好坏?

2025-07-31 06:45:42 512

原创 理解训练深度前馈神经网络的困难—— 解锁深度学习的关键钥匙

**原因:** 当时主流的激活函数是 **Sigmoid** 或 **Tanh**。**论文的突破性洞察:** 问题的关键在于信号(无论是前向的数据还是反向的误差梯度)在层间流动时**强度的稳定性**。2. **关键变量:** 决定信号强度的主要是**权重 `W` 的方差 `Var(W)`** 和**该层输入/输出的神经元数量 (`n_in`, `n_out`)**。2. **Tanh 成为赢家:** 配合Xavier初始化,Tanh激活函数在深层网络上取得了**显著成功**!

2025-07-30 07:09:00 356

原创 数据的惊人效力:当数据量成为人工智能的魔法钥匙

1. **简单模型 + 海量数据 > 复杂模型 + 有限数据:** 当数据规模**突破某个临界阈值**,原本简单的统计模型(如n-gram语言模型、朴素贝叶斯分类器)性能会**发生质的飞跃**,甚至超越在较小数据集上表现优异的复杂模型。3. **重视相关性,不苛求因果:** 海量数据擅长揭示变量间的**强统计关联(相关性)**,即使其背后的**因果机制尚不明确**。4. **工程能力的重要性飙升:** 处理海量数据需要强大的**分布式计算框架、高效的存储系统、数据流水线工程能力**。

2025-07-29 06:50:16 653

原创 记忆胶囊:LSTM如何突破机器遗忘症?

**2023**:LLM虽主导,但LSTM仍在**边缘计算**(智能手表、IoT设备)中不可替代。> - 读到**结局**:输出门从细胞状态提取**黑衣人**记忆,结合当前句子输出预测。| **遗忘门** | **橡皮擦** | Sigmoid输出0~1,0=全忘 || **输出门** | **知识调酒师** | Sigmoid控制输出强度 || **输入门** | **信息过滤器** | Sigmoid选重要特征 |- 实验证明:可处理**1000+步**的序列依赖(远超RNN的10步)

2025-07-28 06:52:59 264

原创 点燃AI视觉革命的星星之火:AlexNet论文入门解读

1. **先实践**:运行代码看效果 → 2. **再读图**:研究论文中的网络结构图 → 3. **后精读**:聚焦Intro/Method关键段落。- **AlexNet思路**:教AI“自学成才”!AlexNet并非理论突破,而是**工程实践的胜利**:用游戏显卡(GTX 580)解决学术难题,证明“实用主义”的价值。- **解决方案**:采用**ReLU函数**(f(x)=max(0,x)),让正向信号畅通无阻。- **困境**:标注百万图片成本极高(ImageNet含**1500万张**图!

2025-07-27 07:05:52 258

原创 AI进化之路:六篇改变世界的论文

今天我们将穿越AI发展的关键时刻,从“识图婴儿”到“科学伙伴”,这些论文不仅是技术突破,更是**人类认知边界的拓荒者**。1. **感知世界**(AlexNet开眼)→ **理解语言**(Transformer破壁)2. **掌握知识**(GPT-3通才)→ **解码生命**(AlphaFold造福生命科学)> 输入“用莎士比亚风格写疫情诗”,AI立刻生成十四行诗——**通用人工智能曙光初现**。3. **具身行动**(足球机器人)→ **自主创造**(ArchGenius)

2025-07-26 09:06:08 404

原创 OpenAI:推开通用人工智能的大门

**创始初心**:2015年,埃隆·马斯克(Elon Musk)、萨姆·奥尔特曼(Sam Altman)等6人创立OpenAI,目标简单而宏大:**“确保通用人工智能(AGI)造福全人类”**。- **GPT-3(2020年)**:1750亿参数模型,首次实现“零样本学习”(无需训练直接翻译/写作)。- **GPT-5(2025年)**:新增**记忆功能**,能记住用户偏好,开启个性化服务时代。#### **3. ChatGPT Agent(2025年)**:**AI的行动革命**

2025-07-25 07:08:26 335

原创 LangChain:大语言模型的“乐高工厂”

正如它的名字所启示:**“语言(Lang)的链条(Chain)”,正在连接人类与机器的智慧边疆**。| **代理(Agents)** | 自动选择工具解决问题 | 会指挥工人的智能工头 || **提示模板** | 动态生成提示词(如自动填变量)| 预制菜食谱(食材可变) || **链(Chains)** | 串联多个步骤(如检索→生成) | 自动化流水线 || **数据连接** | 接入文档/数据库/API | 数据吸管 || **记忆模块** | 保存对话历史 | AI的“便利贴” |

2025-07-24 06:42:41 327

原创 CUDA:点燃并行计算的“火箭引擎”

**CUDA程序** | 施工图纸+操作手册 | 告诉工人如何协同砌墙 || **全局内存** | ★★☆☆☆ | 极大 | CPU/GPU数据交换 || **寄存器** | ★★★★★ | 极小 | Thread私有变量 || **共享内存** | ★★★★☆ | 中 | Block内线程通信 |c[i] = a[i] + b[i];| **CPU** | 工地总指挥 | 分配任务、复杂决策 || **GPU** | 万名建筑工人 | 并行执行简单任务 |

2025-07-22 08:50:32 398

原创 解码器(Decoder)作用与原理

输入"A cat sits" + 图像特征 → 生成"on a tree"| 将理解的外语意思用母语表达 | 英语语义 → 输出中文句子 |解码器输入:"<s> 猫 追" → 预测"追"时只能看"<s> 猫"| 推理 | 自身上一时刻输出 | 严格串行 | 慢(需优化)|- 输入"A cat" + 图像特征 → 生成"sits"| 只能复现固定模式 | 生成全新合理内容(如诗歌) || 训练 | 真实标签(右移掩码) | 可并行 | 快 |> 生成英文"apple"时,聚焦中文输入中的"苹果"

2025-07-21 06:40:13 965

原创 编码器(Encoder)作用与原理

**语言翻译官** | 听懂外语并提炼核心含义 | 英文句子 → 内部语义表示 || **会议记录员** | 总结讨论要点形成纪要 | 长篇文章 → 核心主题编码 || **化学萃取器** | 从矿石中提取纯金属 | 原始像素 → 物体特征向量 || **多模态处理**| 仅支持单一数据类型 | 统一架构处理文本/图像/语音 || **Transformer**| 全局双向 | 极快 | NLP/多模态 || **RNN/LSTM** | 单向/双向 | 慢 | 时序数据(语音) |

2025-07-20 07:29:50 235

原创 前馈神经网络(Feedforward Neural Network, FNN)说明

**Tanh** | (eˣ-e⁻ˣ)/(eˣ+e⁻ˣ)| 输出-1~1(中心化) | [S型] || **Sigmoid** | 1/(1+e⁻ˣ) | 输出0~1(概率) | [S型曲线] || **ReLU** | max(0,x) | 解决梯度消失,计算快 | [折线] || **生产线组装** | 将零件组合为复杂产品 | 屏幕+芯片+电池→智能手机 || **化学提纯** | 逐层提取有效成分 | 矿石→金属(去除杂质) || 激活函数 | 细胞膜电位触发机制 | 生物更复杂(离子通道)|

2025-07-19 07:08:38 278

原创 GPT:让机器拥有“创造力”的语言引擎

当ChatGPT写出莎士比亚风格的十四行诗,当GitHub Copilot自动生成编程代码,背后都源于同一项革命性技术——**GPT(Generative Pre-trained Transformer)**。| **架构** | Transformer编码器 | **Transformer解码器** |- **统计模型**:只能续写高频短语(输入“春天”→输出“来了”)| **训练** | 双向理解上下文 | **单向生成文本** || **能力** | 文本理解专家 | **文本创作大师** |

2025-07-18 06:35:37 374

原创 BERT技术架构

**词嵌入** | 将词转为数字向量 | “猫”→ [0.2, -1.7, 0.5] || **位置嵌入** | 标记词的位置(0~511) | 首词位置0 → 特定波形编码 || **段落嵌入** | 区分句子A/B(用于问答等任务) | 句子A标0,句子B标1 |- **BERT-base**:12层,每层12个注意力头,隐藏层768维。1. **输入处理**:给每个词发“身份证”(词ID+位置卡+段落卡)#### **3. 核心机制:自注意力(以“猫追老鼠”为例)**

2025-07-17 06:39:21 326

原创 Transformer技术架构

**核心升级2:编码-解码注意力(Encoder-Decoder Attention)**| **输入处理** | 编码英文“I love you” | 生成起始符`<s>` || **首词生成** | 输出语义向量 | 根据`<s>`和编码向量生成“我” |- **子层1:多头自注意力(Multi-Head Attention)**| **次词生成** | - | 基于`<s>我`+编码向量生成“爱”|| **训练速度** | 慢(无法并行) | 快(GPU满载) |

2025-07-16 06:44:28 399

原创 Transformer注意力机制

👉 **人类认知的对比**:读句子时,大脑会**自动抓取关键词**(如动词“踢”关联“谁踢”和“踢什么”),不受位置限制。> 导演(注意力机制)根据演员互动热度(权重),把“狗”的戏份融入“猫”的角色重塑。- **Query(查询牌)**:当前词的“提问”(如“猫想知道:谁在追我?- **Key(钥匙牌)**:标识词的身份特征(如“狗”的钥匙牌写着“追逐者”)- **Value(信息牌)**:词的实际含义(如“狗”= 一种动物)- “苹果”可能关联“水果”(语义类属)或“iPhone”(品牌)

2025-07-15 06:38:41 328

原创 Transformer:改变AI认知世界的超级引擎

它提出的**Transformer模型**,仅用5年就彻底重塑了人工智能——从ChatGPT的对话到Midjourney的绘画,背后都是它的力量。| **Query/Key/Value** | 每个词生成Q/K/V向量 | 代表准备问题/身份牌/观点 |> - **注意力机制** 让每个人自动聚焦相关发言者(如“猫”关注“追”“打翻”“抱走”)| **相关性打分** | Q·K^T → 注意力权重 | 统计“谁的问题与我相关” |- **解码器**:生成输出(如英文翻译),额外多一层“编码-解码注意力”

2025-07-14 06:40:55 339

原创 GRU:更轻、更快、更聪明的循环神经网络

想象你正在同时追三部剧——传统RNN会忘掉第一集的剧情,LSTM能记住但需要三个“闹钟”提醒,而今天的主角**GRU(门控循环单元)**,只需**两个开关**就能精准管理记忆!> 1. **更新门(Update Gate)**:决定**保留多少旧库存**(记忆) vs **接收多少新货物**(输入)> - **精妙之处**:更新门*zₜ*同时控制**遗忘旧值**(1−zₜ)和**接收新值**(zₜ),实现“一肩双挑”!> - **⊙(逐元素乘)**:如重置门*rₜ=0*时,完全丢弃旧记忆。

2025-07-12 06:48:33 312

原创 LSTM:让AI拥有“长期记忆”的秘密武器

**2. 输入门** | *iₜ = σ(W_i·[hₜ₋₁, xₜ] + b_i)* | 筛选新信息的价值 || **3. 更新细胞状态** | *Cₜ = fₜ ⊙ Cₜ₋₁ + iₜ ⊙ C̃ₜ* | 更新记忆(⊙为逐元素乘)|- **门控机制(Gates)**:用**Sigmoid函数**(输出0~1)模拟开关,精准控制信息流。> - **关键设计**:细胞状态 **Cₜ** 的加法更新(非RNN的乘法),彻底解决梯度消失!

2025-07-11 06:31:13 373

原创 循环神经网络:让AI拥有“记忆”的突破

今天我们来聊一个让机器学会“读小说”“听音乐”甚至“写诗歌”的技术——**循环神经网络(RNN)**。- **Transformer模型**(如BERT、GPT):通过自注意力机制彻底解决长程依赖,成为当前主流。- **隐藏状态(Hidden State)**:RNN的“记忆胶囊”,存储历史信息的关键特征。- 核心结构:**细胞状态(Cell State)**——一条“记忆高速公路”,梯度稳定流动。> 1. 结合**当前输入** + **上一步的记忆**,生成新输出。每次新信息输入时,机器会做两件事:!

2025-07-10 06:47:33 341

原创 卷积神经网络:数字世界的视觉革命

芬兰国家电网用**单层CNN+单层LSTM**的极简混合模型,既捕捉空间用电分布(CNN),又建模时间周期规律(LSTM),实现误差低于传统模型30%的突破。视觉皮层从简单特征(线条)到复杂特征(物体)逐层提取。> **简单比喻**:CNN像一名侦探,先观察局部线索(卷积),筛选关键证据(池化),最后推理全局真相(分类)。- **GoogleNet**:发明**Inception模块**,在深度与效率间平衡。- **ResNet**:引入**残差连接**,破解千层网络训练难题(2015年)

2025-07-09 06:36:44 391

原创 数字信号处理:给信息装上智能引擎

2. **核心工具篇:频谱分析的革命 - FFT** - **离散傅里叶变换(DFT)** 的定义、性质及局限性(频谱泄漏、栅栏效应);**DFT与DTFT、ZT的关系**;* **第七章:有限字长效应** - **量化与量化误差模型**(舍入、截尾);* **第三章:快速傅里叶变换(FFT)** - **DFT直接计算复杂度问题**;3. **理解系统实现:** 认识数字信号处理系统的**硬件架构**(DSP芯片、FPGA)与**软件实现**中的关键问题(有限字长效应、实时性、资源约束)。

2025-07-08 06:31:32 277

原创 信号与系统:解码信息世界的通用语言

**第二章:LTI系统的时域分析** - **冲激响应**`h(t)/h[n]`的定义与意义;2. **时域分析篇:卷积的力量** - **LTI(线性时不变)系统**的核心特性;**卷积积分(连续)**与**卷积和(离散)** 的定义、计算、性质及其物理意义(系统对任意输入的响应 = 输入与冲激响应的卷积)。3. **洞察系统本质:** 深刻理解系统的**关键特性**——线性/非线性、时变/时不变、因果/非因果、稳定/不稳定、记忆/无记忆,以及如何用**冲激响应、频率响应、系统函数**来描述系统。

2025-07-07 06:29:37 332

原创 微机原理:揭开智能机器灵魂的奥秘

**第七章:中断系统** - **中断概念与作用**;* **汽车电子:** **发动机控制单元(ECU)**、**车身控制模块(BCM)**、**防抱死制动系统(ABS)**、**安全气囊控制器**、**信息娱乐系统**,核心都是嵌入式微处理器(单片机/MCU)。3. **构建最小系统:** 掌握如何将CPU、**存储器(RAM, ROM)**、**输入/输出接口(I/O)** 芯片通过**总线(地址、数据、控制)** 连接成一个能工作的最小计算机系统。* **中断方式**:**重中之重!

2025-07-06 06:19:43 481

原创 数电:构建智能世界的“开关语言”

**第四章:常用组合逻辑器件** - **编码器**(优先编码器);* **第八章:常用时序逻辑器件** - **寄存器**(数据存储);**逻辑门电路**(与、或、非、与非、或非、异或、同或)及其功能。7. **数模接口篇:** **数模转换器(DAC)** 与**模数转换器(ADC)** 的基本原理、主要类型(如权电阻网络DAC、逐次逼近型ADC)与性能指标(分辨率、转换速度、精度)。* **计算机系统:** **CPU(中央处理器)** 本身就是由海量的逻辑门和时序电路构成的超大规模数字系统;

2025-07-05 07:45:19 326

原创 模电:塑造真实世界的电子设计师语言

*四大基本运算电路**(同相/反相比例、加法、减法)。* **工业控制:** 传感器(温度、压力、流量)输出的微弱模拟信号需要**信号调理电路**(放大、滤波);3. **建立工程思维:** 深刻理解**理想与现实的差距**(非线性、温度漂移、噪声、带宽限制),学会工程近似(如“虚短”、“虚断”)和折衷设计。5. **应用篇:功能电路设计** - 学习利用运放和分立元件设计**有源滤波器**(低通、高通、带通等)、**信号产生电路**(正弦波、方波振荡器)、**直流稳压电源**(整流、滤波、稳压)。

2025-07-04 06:30:14 321

原创 电路:硬件世界的语法课

**第一章:电路模型与定律** - 电压、电流、功率定义;* **电子产品:** 手机、电脑、电视内部的主板、电源适配器(开关电源涉及动态电路)、音频放大器(功率放大)、信号处理单元(滤波、放大)无不依赖精密设计的电路。* **通信技术:** 无论是古老的电话线,还是现代的4G/5G基站、光纤网络,信号传输、滤波、调制解调都离不开电路理论(尤其是交流分析、频率响应)。1. **基础篇:** 认识“单词”和“字母”——电压、电流、功率、电阻、电容、电感、电源等基本概念与定律(欧姆定律、基尔霍夫定律)。

2025-07-03 06:42:56 355

原创 Transformers 库:AI的模型乐高

Transformers 库不仅是工具,更是 **技术平权的宣言**——它让中学生训练卫星遥感模型,让非洲医院用手机诊断疟疾。- **冻结参数**:`model.embeddings.requires_grad=False`,减少 40% 计算量。") # 输出:"你好,Transformers!- **梯度累积**:小显存模拟大批量,调整 `gradient_accumulation_steps=4`;- **混合精度**:`fp16=True` 激活 GPU TensorCore,速度提升 3 倍;

2025-07-02 06:39:45 376

原创 LightGBM:速度与精度“梯度提升之王

LightGBM不仅是算法,更是**效率与精度的完美平衡**——它让小公司用单台服务器处理亿级数据,让研究者从等待训练中解放创造力。现在,轮到你我挥舞这把‘数据利剑’,切开混沌,预见未来!而今天的主角 **LightGBM**,正是微软为破解这一难题打造的‘超级引擎’:**训练速度提升10倍,精度反而更高**。- 叶子节点数`num_leaves`:**不超过$2^{max\_depth}$**(防过拟合)。- LightGBM:**只分裂损失下降最大的叶子**(类似“精英培养”),精度提升20%。

2025-07-01 06:39:06 363

原创 PyCaret:低代码之力,让AI触手可及

**案例**:医疗AI团队用`plot_model(plot='forecast')`预测疫情趋势,误差仅3%。英特尔CPU优化提速40%。- **本质**:用5行代码替代500行,例如模型比较仅需`compare_models()`。- **量化(Quantization)**:32位浮点→8位整数,模型体积**缩小75%**。- **输出**:标黄显示最佳指标(如准确率、RMSE),决策时间缩短**90%**。- **核心理念**:用低代码(Low-Code)将实验效率提升**10倍以上**。

2025-06-30 06:39:43 279

原创 PyTorch:动态之力,重塑AI未来

PyTorch不仅是工具,更是**AI民主化的象征**——它让高中生用Colab训练模型,让初创公司与科技巨头同台竞技。而让研究者们自由探索这种魔法的‘魔杖’,正是 **PyTorch**。- **核心理念**:“Define-by-Run”——代码即计算图,实时构建、即时修改,像写Python一样自然。- `DistributedDataParallel`:百台机器并行训练,百亿参数模型训练时间**从月缩至天**。- **知识蒸馏**:让小模型“学习”大模型知识,性能保留90%,算力需求降60%。

2025-06-29 07:13:35 313

原创 TensorFlow:开启智能时代的引擎

TensorFlow不仅是工具,更是**AI民主化的推手**——它让高中生能用Colab训练模型,让创业公司能与巨头同台竞技。** 现在,轮到你我参与这场流动了!而推动这场革命的引擎之一,就是今天的主角:**TensorFlow**。- 实时展示损失曲线、模型结构、参数分布——**让训练过程“看得见”**。> **类比**:就像“乐高积木”,提供标准化模块,快速搭建AI系统。- **突破性设计**:将计算过程拆分为节点(操作)和边(数据流)。- **剪枝(Pruning)**:删除冗余神经元,加速推理。

2025-06-28 06:49:46 277

原创 Scikit-learn:机器学习的「万能工具箱」

**破局者**:David Cournapeau发起 *Scikit-learn* 项目,**统一算法接口** + **Python简易语法** = 机器学习民主化革命。| `StandardScaler` | 数据标准化 | `X_scaled = scaler.fit_transform(X)` |1. **统一API**:所有模型共享 `fit()`、`predict()`、`transform()` 方法。- **文本处理**:`TfidfVectorizer` 将文章转为词频矩阵。

2025-06-27 06:38:59 704

原创 Pandas:数据科学的超级瑞士军刀

1. 链式操作:`(df.query("age>30").groupby("city")["income"].mean())`df["category"] = df["category"].astype("category") # 分类变量优化。temps = pd.Series([28, 32, 25], index=["北京", "上海", "广州"])df.loc[i, "利润"] = df.loc[i, "收入"] - df.loc[i, "成本"]

2025-06-26 06:39:25 741

原创 NumPy:科学计算的「超级引擎」

**转折点**:Travis Oliphant融合Numarray与Numeric → **NumPy 1.0 (2006)**- **禁用隐式拷贝**:`arr2 = arr1[:].copy()` 替代 `arr2 = arr1[:]`| **ndarray** | 数据容器 | `.shape`, `.dtype`, `.strides` || **广播机制** | 不同形状数组运算 | `arr(3,1) + arr(1,3) → (3,3)` |

2025-06-25 06:35:20 357

原创 Python库:数据智能的“万能工具箱”

**特点** | 工业部署强项,支持移动端(TensorFlow Lite) | 动态计算图,调试像写Python一样自然 |> **终极建议**:不要等学完所有库再实践!> **类比**:Python就像乐高底座,机器学习库则是各种功能模块,自由组合构建AI系统。| **库名** | **TensorFlow** | **PyTorch** |> **选择建议**:做产品选TensorFlow,做研究选PyTorch。**Scikit-learn(sklearn)**:机器学习“瑞士军刀”

2025-06-24 06:39:41 381

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除