LeetCode //C - 829. Consecutive Numbers Sum

829. Consecutive Numbers Sum

Given an integer n, return the number of ways you can write n as the sum of consecutive positive integers.
 

Example 1:

Input: n = 5
Output: 2
Explanation: 5 = 2 + 3

Example 2:

Input: n = 9
Output: 3
Explanation: 9 = 4 + 5 = 2 + 3 + 4

Example 3:

Input: n = 15
Output: 4
Explanation: 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5

Constraints:
  • 1 < = n < = 10 9 1 <= n <= 10^9 1<=n<=109

From: LeetCode
Link: 829. Consecutive Numbers Sum


Solution:

Ideas:
  • We try every possible sequence length k (number of terms in the sequence).

  • The formula for the sum of k consecutive integers starting from x is:
    n = k * x + k*(k - 1)/2

  • Rearranged:
    x = (n - k*(k - 1)/2) / k

  • x must be a positive integer ⇒ (n - k*(k-1)/2) % k == 0

  • The loop runs as long as the sum of the smallest k numbers (k*(k-1)/2) is less than n.

  • Time complexity is roughly O(√(2n)) since k*(k-1)/2 < n.

Code:
int consecutiveNumbersSum(int n) {
    int count = 0;
    // Try all possible lengths k of sequences from 1 upwards
    for (int k = 1; k * (k - 1) / 2 < n; ++k) {
        // Check if there exists an x such that n = k * x + k*(k-1)/2
        if ((n - k * (k - 1) / 2) % k == 0)
            count++;
    }
    return count;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值