第十一期——设计循环队列

题目

查看原题目请点击这里

设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。

循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。

你的实现应该支持如下操作:

  • MyCircularQueue(k): 构造器,设置队列长度为 k 。
  • Front: 从队首获取元素。如果队列为空,返回 -1 。
  • Rear: 获取队尾元素。如果队列为空,返回 -1 。
  • enQueue(value): 向循环队列插入一个元素。如果成功插入则返回真。
  • deQueue(): 从循环队列中删除一个元素。如果成功删除则返回真。
  • isEmpty(): 检查循环队列是否为空。
  • isFull(): 检查循环队列是否已满。

思路

如下图是一个环形队列,我们首先要思考的问题就是如何判断环形队列是为空,如何判断环形队列为满?

如下图,下面这个队列中有k个整型大小的空间,当队列为空的时候,rear==front;当队列放满了k个数据的时候,rear==front;我们发现,对于下面这个队列来说,无论队列为空还是为满,rear都等于front,那应该如何判断?

第一个方法就是利用计数器的方法,每当添加一个数据,size就+1,当size==0时。队列为空;当k==size的时候,就说明队列已经满了,无法再添加新的元素。

第二个方法就是开辟k+1个整型大小的空间,当rear==front的时候,队列为空;最后一个空间不用来存放数据,而当rear+1==front的时候,队列就满了。如下图:

而由于我们使用数组来实现队列的,所以说上述逻辑中rear和front的关系应转化为数组下标的关系。

如图:当rear==front时,队列是空的;当(rear+1)%k==front时,队列已经满了。

当我们想要出队的时候,需要将front+1,但是我们不应只简单的给front+1,如图:

如果我们想要出队a1,我们应该执行的操作是:(front+1)%k;

而当我们想要入队时,需要改变rear的值,此时对rear的处理同上。

代码(C语言版)

typedef struct {
    int* a;
    int front;
    int rear;
    int k;
} MyCircularQueue;

bool myCircularQueueIsEmpty(MyCircularQueue* obj) {
    return obj->rear==obj->front;
}

bool myCircularQueueIsFull(MyCircularQueue* obj) {
    return (obj->rear+1)%obj->k==obj->front;
}
MyCircularQueue* myCircularQueueCreate(int k) {
    MyCircularQueue* cirque=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));
    if(cirque==NULL)
    {
        perror("error");
        return NULL;
    }
    cirque->a=(int*)malloc(sizeof(int)*(k+1));
    cirque->front=cirque->rear=0;
    cirque->k=k+1;
    return cirque;
}

bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {
    //如果队列满了,插入失败
    if(myCircularQueueIsFull(obj))
        return false;
    obj->a[obj->rear++]=value;
    obj->rear%=obj->k;
    return true;
}

bool myCircularQueueDeQueue(MyCircularQueue* obj) {
    //如果队列为空,删除失败
    if(myCircularQueueIsEmpty(obj))
        return false;
    obj->front++;
    obj->front%=obj->k;
    return true;
}

int myCircularQueueFront(MyCircularQueue* obj) {
    if(myCircularQueueIsEmpty(obj))
        return -1;
    else
        return obj->a[obj->front];
}

int myCircularQueueRear(MyCircularQueue* obj) {
    if(myCircularQueueIsEmpty(obj))
        return -1;
    else
        return obj->a[(obj->rear-1+obj->k)%obj->k];
}
void myCircularQueueFree(MyCircularQueue* obj) {
    free(obj->a);
    obj->a=NULL;
    free(obj);
}

持续更新,下期见

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值