kudu的基本操作(查看集群状态,APT操作,impala操作,spark整合)

本文介绍了如何进行Kudu的基本操作,包括通过命令行查看Kudu集群状态,Kudu与Impala的整合,以及Kudu的API使用。详细步骤涉及查看Master和Tablet Server状态,初始化Kudu client,创建、修改和删除表,以及数据的增删查改。同时,文章还讲解了Kudu与Spark的整合,提供了Spark读写Kudu的数据源配置和KuduContext的操作示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.命令行查看kudu状态操作

通过root用户切换到kudu用户
1.1 查看集群整体信息(我本机的hostname是hadoop002,也就是kudu的master是hadoop002)

-bash-4.2$ kudu cluster ksck hadoop002
Connected to the Master
Fetched info from all 1 Tablet Servers
Table wc is HEALTHY (3 tablet(s) checked)

Table Summary
 Name | Status  | Total Tablets | Healthy | Recovering | Under-replicated | Unavailable
------+---------+---------------+---------+------------+------------------+-------------
 wc   | HEALTHY | 3             | 3       | 0          | 0                | 0
The metadata for 1 table(s) is HEALTHY
OK

1.2 查看master状态

-bash-4.2$ kudu master status localhost
node_instance {
  permanent_uuid: "2431dd2c03a54ff0be6f14fec9cb4ab7"
  instance_seqno: 1586275391374513
}
bound_rpc_addresses {
  host: "hadoop002"
  port: 7051
}
bound_http_addresses {
  host: "hadoop002"
  port: 8051
}
version_info {
  git_hash: "70babd7c7391a980df09d8b7bc5b42ed35a26f62"
  build_hostname: "impala-ec2-pkg-centos-7-1c83.vpc.cloudera.com"
  build_timestamp: "09 Aug 2018 09:46:59 PST"
  build_username: "jenkins"
  build_clean_repo: true
  build_id: "2018-08-09_08-50-19"
  build_type: "RELEASE"
  version_string: "1.7.0-cdh5.15.1"
}

1.2 查看tserver的状态

-bash-4.2$  kudu tserver status localhost
node_instance {
  permanent_uuid: "8cd8c704667747d98afb3ef342f6f1b5"
  instance_seqno: 1586275398491656
}
bound_rpc_addresses {
  host: "hadoop002"
  port: 7050
}
bound_http_addresses {
  host: "hadoop002"
  port: 8050
}
version_info {
  git_hash: "70babd7c7391a980df09d8b7bc5b42ed35a26f62"
  build_hostname: "impala-ec2-pkg-centos-7-1c83.vpc.cloudera.com"
  build_timestamp: "09 Aug 2018 09:46:59 PST"
  build_username: "jenkins"
  build_clean_repo: true
  build_id: "2018-08-09_08-50-19"
  build_type: "RELEASE"
  version_string: "1.7.0-cdh5.15.1"
}

2.kudu整合impala操作

### 使用 SparkKudu 集成进行数据操作 要实现 SparkKudu 的集成并完成数据操作,需按照以下方法配置环境、编写代码以及遵循最佳实践。 #### Maven 依赖配置 为了使 Spark 能够成功操作 Kudu 数据表,需要在项目中添加必要的 Maven 依赖项。以下是所需的依赖配置: ```xml <dependency> <groupId>org.apache.kudu</groupId> <artifactId>kudu-spark2_2.11</artifactId> <version>1.10.0-cdh6.3.2</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>2.3.1</version> </dependency> ``` 以上依赖分别用于支持 KuduSpark SQL 功能[^1]。 --- #### 创建 KuduContext 对象 `KuduContext` 是 Spark 应用程序中与 Kudu Java 客户端交互的核心组件。它提供了对 Kudu 表的操作接口,例如读取、写入和删除等。 下面是一个简单的 `KuduContext` 初始化示例: ```scala import org.apache.kudu.spark.kudu._ import org.apache.spark.sql.SparkSession val spark = SparkSession.builder() .appName("Spark-Kudu Integration Example") .master("local[*]") .getOrCreate() // 创建 KuduContext 实例 val kuduMaster = "10.19.120.70:7051" val kuduContext = new KuduContext(kuduMaster, spark.sparkContext) // 打印当前 Kudu 中存在的表名列表 val tableNames = kuduContext.syncClient.getTablesList.getTablesList if (tableNames.iterator().hasNext) { println(tableNames.iterator().next()) } ``` 通过上述代码可以初始化一个 `KuduContext` 并获取目标 Kudu 主机上的现有表名称[^2]。 --- #### 查询 Kudu 表的数据 使用 Spark DataFrame API 可以轻松查询存储在 Kudu 中的数据。假设有一个名为 `example_table` 的 Kudu 表,则可以通过以下方式加载其内容: ```scala // 加载 Kudu 表为 DataFrame val df = spark.read.options(Map( "kudu.master" -> kuduMaster, "kudu.table" -> "example_table" )).kudu df.printSchema() // 显示 Schema 结构 df.show() // 展示前几条记录 ``` 此代码片段会将指定的 Kudu 表作为 DataFrame 导入,并打印出该表的结构及其部分数据[^3]。 --- #### 插入或更新数据至 Kudu 表 除了读取外,还可以利用 `DataFrameWriter` 将新的数据插入或者覆盖已有数据到 Kudu 表里去。比如向同一个 `example_table` 添加一些新行: ```scala import org.apache.spark.sql.Row import org.apache.spark.sql.types._ // 构造一个新的 DataFrame 来表示待插入的数据 val schema = StructType(Seq( StructField("id", StringType), StructField("age", StringType), StructField("name", StringType) )) val data = Seq(Row("new_id", "28", "John"), Row("another_id", "35", "Doe")) val newDataFrame = spark.createDataFrame(spark.sparkContext.parallelize(data), schema) // 把这个 DataFrame 写回到 Kudu 表中 newDataFrame.write.options(Map( "kudu.master" -> kuduMaster, "kudu.table" -> "example_table", "operation" -> "upsert" // 支持 insert 或 upsert 操作模式 )).mode("append").format("kudu").save() ``` 这段脚本展示了如何构建自定义数据帧并通过 UPSERT 方法将其保存回原表格之中[^4]。 --- #### 性能优化建议 为了避免性能瓶颈和其他潜在问题,请注意以下几点: - **单个集群内的唯一客户端**:不要多次实例化相同的 Kudu Client;而是应该重用由 `KuduContext#syncClient` 提供的那个单一连接。 - **监控日志文件**:如果发现主服务被过多重复请求所淹没(如 GetTableLocations),则可能意味着存在多余的客户建立行为,应及时排查修复。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值