信号失真要如何测量?

信号失真是指信号在传输或放大过程中,输出信号的波形与输入信号的波形不一致,导致信号的幅度、频率或相位发生变化的现象。

放大器的非线性失真是指输入信号在经过放大器后所产生的输出信号中包含其他频率分量的信号,由于非线性失真导致了原信号所包含的信息发生了畸变,这会给信号处理带来很大困难。

放大器失真的原因主要有两个:一是放大器件的工作点进入了特性曲线的非线性区,使输入信号和输出信号不再保持线性关系;二是放大器的频率特性不好,对输入信号中不同频率成分的增益或延时不同。放大器的失真会影响信号的质量和稳定性,因此需要采取一些措施来消除或减小失真,如选择合适的偏置电压、负反馈、滤波、屏蔽等。

在一定程度上,每个放大器都是非线性的,并且在大多数情况下很难准确确定放大器的非线性方程。但是,如果在所感兴趣的信号频率范围内,非线性信号的功率非常小,则可以将放大器看作是线性的。

谐波失真是一种发生在输入信号频率谐波上的失真,其频率为输入信号频率的整数倍。谐波失真是由非线性的传递函数产生的,如果假定传递函数是平稳的,如不随时间变化,而且输入信号呈现周期性,那么输出也将是一个周期信号。

频域上,周期信号的傅里叶级数由基波周期频率的谐波组成,对于一个周期输入信号,当输入输出之间的函数关系不随时间变化,都不会出现非谐波失真。

谐波的产生是由于非线性负载的存在,导致了电流与电压之间形成了非线性关系,它可以用一个二阶多项式来描述:

其中i(t)是电流,v(t)是电压,a0,a1,a2是常数。如果电压是一个正弦波,例如:

其中,V0是电压的幅值,ω是电压的角频率。将电压代入电流的表达式,可以得到:

可以将三角函数的公式代入电流的表达式,得到:

从表达式可以看出,电流中除了包含基波频率ω的分量,还包含二次谐波频率2ω的分量,其幅值与a2和V0平方成正比。因此,二阶多项式可以用来表示谐波的产生,而二次谐波的强度与电压的平方有关。若输入输出电压特性呈现出更为复杂的关系,那么将导致更高次谐波的出现。

测量方法

对于放大器这样的器件,常用指标是总谐波失真(Total Harmonic Distortion,THD)测量方法与公式如下:

测量方法:产生一个频谱纯净的单频正弦波信号作为输入,用一个频谱分析仪观察输出信号的频谱,记录下基波和各阶谐波的幅度。

测量公式:总谐波失真(THD)为所有谐波的均方根值与基波的均方根值的比值,通常用百分比或分贝表示。计算公式为:

其中,V1是基波的均方根值,Vn是第n阶谐波的均方根值,N是考虑的最高阶数。若需要转换成dB,是20*log10(.)

Matlab中有直接计算THD的函数:thd(x)。有时可以对放大器的一些非线性进行校正。如果放大器的输出经过数字化,可以通过对捕获的输出进行数字后处理并对非线性进行数学校正来还原更好的动态范围。发现使用多项式校正时,第二个和第三个谐波会显著降低。

### 信号发生器输出波形失真的类型及原因 信号发生器在实际应用中,由于多种因素的影响,可能导致输出波形偏离理想形态。这种现象被称为波形失真。以下是常见的波形失真类型及其成因: #### 1. **谐波失真** 谐波失真是指输出波形中含有不需要的谐波分量,这些谐波是由基频整数倍构成的频率成分引起的。当信号发生器未能精确生成纯正弦波时,就会引入额外的谐波分量[^1]。 这种情况常见于低质量或老旧设备,在扫描模式下尤为明显。 #### 2. **相位噪声** 相位噪声是指信号中的随机相位抖动,它会破坏波形的时间一致性。这通常是由于信号源内部振荡器不稳定造成的。特别是在频率快速变化的过程中,相位噪声更容易显现出来[^1]。 #### 3. **幅度失真** 幅度失真是指输出信号的实际幅值与预期不符的现象。造成这一问题的原因可能是放大电路的非线性特性、电源电压不足或是负载阻抗不匹配等问题[^2]。 #### 4. **交越失真** 交越失真主要发生在采用推挽式放大器设计的信号发生器中。当信号通过零点附近切换极性时,可能出现短暂的中断或偏差,从而影响波形的质量。 #### 5. **热漂移** 电子元件受温度变化影响而产生的性能波动也会引起波形失真。例如,电阻值随温度升高发生变化,进而改变电路的工作状态,最终反映到输出波形上。 #### 6. **寄生耦合干扰** 外界电磁场或其他电气组件之间存在的不必要的相互作用也可能成为污染原始信号的因素之一。比如邻近线路串扰或者接地不良都可能向目标信号注入杂散信号[^3]。 为了减少以上各种类型的失真情况的发生概率以及程度,使用者应当注意合理调节各项参数,并选用高质量硬件设施来构建实验环境;同时还需要定期校准仪器以维持最佳运行状况。 ```python import numpy as np import matplotlib.pyplot as plt # 模拟一个含有谐波失真的正弦波 t = np.linspace(0, 1, 1000) f = 5 # 基本频率(Hz) y_pure = np.sin(2 * np.pi * f * t) # 理想正弦波 y_distorted = y_pure + 0.2 * np.sin(2 * np.pi * 3*f * t) # 添加三次谐波 plt.figure(figsize=(8, 4)) plt.plot(t, y_pure, label="Pure Sine Wave", color='blue') plt.plot(t, y_distorted, linestyle="--", label="Distorted Sine Wave with Harmonics", color='red') plt.legend() plt.title("Comparison of Pure and Distorted Sinusoidal Waves") plt.xlabel("Time(s)") plt.ylabel("Amplitude(V)") plt.grid(True) plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值