GseaVis | GSEA富集分析可视化利器

1. 包的简介

GseaVis是一个功能强大的GSEA富集分析可视化R包 1 ,它不仅支持GSEA软件和clusterProfiler包的分析结果处理,还提供了丰富的可视化选项,包括富集曲线、热图和基因注释等多种展示方式。通过统一的gseaNb()函数接口,用户可以灵活地进行个性化的图形定制,使GSEA分析结果的展示更加直观和专业。

 图1 多通路可视化

2. 包的安装与分析

### 安装
devtools::install_github("junjunlab/GseaVis") # 从Github安装

library(GseaVis) # 加载包
##### 分析实操  #####
### **单通路可视化** ###
### 示例图见图2 ###

library(GseaVis)
library(dplyr)
library(gridExtra)

# 读取数据
gseaRes <- readRDS("./go_result.rds") #上篇分析得到的go_result结果,格式为rds

##########  单通路可视化  ###############
# 创建GSEA可视化
# 指定要展示的通路
term <- "GO:0009897"

# 获取核心基因
core_genes <- strsplit(gseaRes[term, "core_enrichment"], "/")[[1]]
display_genes <- sample(core_genes, 15) # 随机展示15个core_genes,当然这一步可以指定感兴趣的基因

# 绘制GSEA图
p <- gseaNb(object = gseaRes,
            geneSetID = term,
            subPlot = 3,           # 显示三个子图
            addGene = display_genes,  # 添加核心基因标注
            rmSegment = TRUE,      # 移除分割线
            addPval = TRUE)        # 添加p值
print(p)
### **多条通路合并绘制** ###
### 示例图见图1 ###

terms <- gseaRes@result$ID[1:3]
p2 <- gseaNb(object = gseaRes,
       geneSetID = terms,
       subPlot = 2,
       termWidth = 35,
       legend.position = c(0.8,0.8),
       addPval = T,
       pvalX = 0.05,pvalY = 0.05)
print(p2)

3. 结果解读

 图2 单通路可视化

 图3 单通路可视化图解

GseaVis生成的可视化结果主要包含三个部分:

  1. 富集得分曲线(上部)
    • 展示基因集的富集分数(ES)计算过程
    • 峰值代表最终的富集得分
    • 重点: 峰值位置对应的基因为核心富集基因
  2. 基因分布带(中部)
    • 黑色竖线表示基因在排序列表中的位置
    • 关键: 竖线密集程度反映基因富集情况
  3. 表达量热图(下部)
    • 红色:在实验组高表达
    • 蓝色:在对照组高表达
    • 注意: 颜色过渡反映表达量变化趋势

4. 后续精彩内容预告

🔬 在接下来的内容中,我们将深入探讨转录组差异基因分析可视化的更多细节,包括:

  1. 🎨 如何自定义GSEA富集图的配色方案
  2. 💡 GSEA分析结果的生物学验证策略
  3. 📈 高级定制化图形的制作技巧

联系方式

好啦,今日分享毕!更多科研干货、绘图技能关注 N今天C了么 不迷路!

Qq交流群: 1013137874

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值