1. 包的简介
GseaVis是一个功能强大的GSEA富集分析可视化R包 1 ,它不仅支持GSEA软件和clusterProfiler包的分析结果处理,还提供了丰富的可视化选项,包括富集曲线、热图和基因注释等多种展示方式。通过统一的gseaNb()
函数接口,用户可以灵活地进行个性化的图形定制,使GSEA分析结果的展示更加直观和专业。
2. 包的安装与分析
### 安装
devtools::install_github("junjunlab/GseaVis") # 从Github安装
library(GseaVis) # 加载包
##### 分析实操 #####
### **单通路可视化** ###
### 示例图见图2 ###
library(GseaVis)
library(dplyr)
library(gridExtra)
# 读取数据
gseaRes <- readRDS("./go_result.rds") #上篇分析得到的go_result结果,格式为rds
########## 单通路可视化 ###############
# 创建GSEA可视化
# 指定要展示的通路
term <- "GO:0009897"
# 获取核心基因
core_genes <- strsplit(gseaRes[term, "core_enrichment"], "/")[[1]]
display_genes <- sample(core_genes, 15) # 随机展示15个core_genes,当然这一步可以指定感兴趣的基因
# 绘制GSEA图
p <- gseaNb(object = gseaRes,
geneSetID = term,
subPlot = 3, # 显示三个子图
addGene = display_genes, # 添加核心基因标注
rmSegment = TRUE, # 移除分割线
addPval = TRUE) # 添加p值
print(p)
### **多条通路合并绘制** ###
### 示例图见图1 ###
terms <- gseaRes@result$ID[1:3]
p2 <- gseaNb(object = gseaRes,
geneSetID = terms,
subPlot = 2,
termWidth = 35,
legend.position = c(0.8,0.8),
addPval = T,
pvalX = 0.05,pvalY = 0.05)
print(p2)
3. 结果解读
GseaVis生成的可视化结果主要包含三个部分:
- 富集得分曲线(上部)
- 展示基因集的富集分数(ES)计算过程
- 峰值代表最终的富集得分
- 重点: 峰值位置对应的基因为核心富集基因
- 基因分布带(中部)
- 黑色竖线表示基因在排序列表中的位置
- 关键: 竖线密集程度反映基因富集情况
- 表达量热图(下部)
- 红色:在实验组高表达
- 蓝色:在对照组高表达
- 注意: 颜色过渡反映表达量变化趋势
4. 后续精彩内容预告
🔬 在接下来的内容中,我们将深入探讨转录组差异基因分析可视化的更多细节,包括:
- 🎨 如何自定义GSEA富集图的配色方案
- 💡 GSEA分析结果的生物学验证策略
- 📈 高级定制化图形的制作技巧
联系方式
好啦,今日分享毕!更多科研干货、绘图技能关注 N今天C了么 不迷路!