Algorithm-Left Edge算法

本文介绍了LE算法用于处理多段资源分配问题,通过按值排序并选择无冲突段放置在不同行,最终确定最少需要三行来确保所有段间两两不冲突。冲突图作为工具,展示了资源分配的可视化表示和最少颜色需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法输入:

  • 多个段,每个段由两个值表示,例如(1,3)

算法原理:

  1. 将多个段按照左边的值排序放到列表中
  2. 遍历列表,不断选择没有重叠的段,直到列表遍历结束,将选择的这些段放在同一行
  3. 增加行计数,重复第二步
    在这里插入图片描述

执行LE算法如下:

  1. 排序列表(这里一开始已按照左边的值排序) {1,6,4,7,2,3,5}
  2. 第一轮,取互不冲突的段1,2,3,放行1
  3. 第二轮,取互不冲突的段6,7,5,放行2
  4. 第三轮,取互不冲突的段4,放行3

结果如下:
在这里插入图片描述
表示最少需要三行使得段之间两两不冲突。

对于所给的段,可以画出冲突图如下:
在这里插入图片描述

所谓冲突图(Conflict Graph)是一种用来表示资源分配冲突的图结构。它由两个部分组成:

  • 节点: 节点代表需要分配的资源。
  • 边: 边代表两个资源之间存在冲突,即它们不能同时分配给同一个请求。

每一行取一个颜色画到冲突图上:
在这里插入图片描述
表示冲突图最少需要3种颜色使得相邻颜色不相同

### L-shaped Algorithm Implementation and Explanation The term "L-shaped algorithm" does not directly appear within the provided references; however, an interpretation can be made based on common algorithms that might fit this description or similar structures used in computational methods. An L-shape often refers to a specific pattern or structure which could relate to optimization problems, pathfinding, or even data binning as seen in some bioinformatics tools like those described for handling Hi-C map comparisons[^1]. However, no direct evidence supports an exact match with any standard named "L-shaped algorithm". For demonstration purposes, let's consider an L-shaped traversal or search algorithm over a matrix, which may resemble what one might expect from such terminology: #### Matrix Traversal Using L-Shaped Path An L-shaped movement through a grid involves moving horizontally until reaching the boundary, then turning vertically downwards (or vice versa). This approach can apply to various tasks including searching elements within grids. ```python def l_shaped_traverse(matrix): rows = len(matrix) cols = len(matrix[0]) row_index = 0 col_index = 0 while True: # Traverse along top edge towards right while col_index < cols - 1: print(f'Visiting {matrix[row_index][col_index]}') col_index += 1 # Move down after hitting column limit if row_index >= rows - 1: break print(f'Downward turn at position ({row_index},{col_index})') # Traverse downward once hit corner while row_index < rows - 1: print(f'Visiting {matrix[row_index][col_index]}') row_index += 1 # Turn left when bottom reached if col_index <= 0: break print(f'Turning left at position ({row_index},{col_index})') # Adjust indices appropriately before next iteration col_index -= 1 row_index -= 1 # Final visitation of last element print(f'Final Visit: {matrix[row_index][col_index]}') # Example usage example_matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] l_shaped_traverse(example_matrix) ``` This code demonstrates how one might implement an L-shaped traversal across a simple numerical matrix. Note that actual applications would depend heavily upon context—whether it pertains more closely to image processing, game development, robotics navigation paths, etc., none explicitly mentioned here but inferred conceptually.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mrbone11

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值