new 二叉树的下一个结点

给定一个二叉树和其中的一个结点,请找出中序遍历顺序的下一个结点并且返回。注意,树中的结点不仅包含左右子结点,同时包含指向父结点的指针。

还原二叉树

既然给了二叉树的某个结点,且二叉树存储着指向父结点的指针(next),那我们可以先找到根节点,再对树进行中序遍历,最后根据中序遍历结果找到给定结点的下一结点

/*
public class TreeLinkNode {
    int val;
    TreeLinkNode left = null;
    TreeLinkNode right = null;
    TreeLinkNode next = null;

    TreeLinkNode(int val) {
        this.val = val;
    }
}
*/
import java.util.*;
public class Solution {
    ArrayList<TreeLinkNode> list = new ArrayList<>();
    public TreeLinkNode GetNext(TreeLinkNode pNode)
    {
        TreeLinkNode root=pNode;
        while(root.next!=null)
            root=root.next;
        inOrder(root);
        
        for(int i=0;i<list.size();i++){
            if(pNode==list.get(i)&&(i+1)<list.size()){ //时刻注意括号里的会不会越界
                return list.get(i+1);
            }
        }
        return null;
    }
    public void inOrder(TreeLinkNode root){
        if(root!=null){
            inOrder(root.left);
            list.add(root);
            inOrder(root.right);
        } 
    } 
}

时间复杂度:O(n)O(n)
空间复杂度:O(n)O(n)

直接找下一个结点

在这里插入图片描述

仔细观察,可以把中序下一结点归为几种类型:

  1. 有右子树,下一结点是右子树中的最左结点,例如 B,下一结点是 H

  2. 无右子树,且结点是该结点父结点的左子树,则下一结点是该结点的父结点,例如 H,下一结点是 E

  3. 无右子树,且结点是该结点父结点的右子树,则我们一直沿着父结点追朔,直到找到某个结点是其父结点的左子树,如果存在这样的结点,那么这个结点的父结点就是我们要找的下一结点。例如 I,下一结点是 A;例如 G,并没有符合情况的结点,所以 G 没有下一结点

/*
public class TreeLinkNode {
    int val;
    TreeLinkNode left = null;
    TreeLinkNode right = null;
    TreeLinkNode next = null;

    TreeLinkNode(int val) {
        this.val = val;
    }
}
*/
public class Solution {
    public TreeLinkNode GetNext(TreeLinkNode pNode)
    {
        //有右子树,下一结点是右子树中的最左结点,例如 B,下一结点是 H
        if(pNode.right!=null){
            TreeLinkNode pRight=pNode.right;
            while(pRight.left!=null){
                pRight=pRight.left;
            }
            return pRight;
        }
        //无右子树,且结点是该结点父结点的左子树,则下一结点是该结点的父结点,例如 H,下一结点是 E
        if(pNode.next!=null && pNode.next.left==pNode){
            return pNode.next;
        }
        //无右子树,且结点是该结点父结点的右子树,则下一结点是
        if(pNode.next!=null){
            TreeLinkNode pNext=pNode.next;
            while(pNext.next!=null&&pNext.next.right==pNext){
                pNext=pNext.next;
            }
            return pNext.next; 
        }
        return null; 
    }
}

时间复杂度:O(n)O(n)
空间复杂度:O(1)O(1)

<think>首先,用户的问题是:“我想在Java中实现或查找二叉树中某个节点的前一个节点。请问Java二叉树查找节点的前一个节点方法。” 这涉及到在二叉树中找到给定节点的前一个节点,可能指的是中序遍历中的前驱节点。 从系统指令中,我需要: - 所有行内数学表达式使用$...$格式。 - 独立公式使用$$...$$格式并单独成段。 - 使用中文回答。 - 生成相关问题。 - 引用的段落末尾添加引用标识。 - 回答结构清晰,帮助用户逐步解决问题。 用户提供的引用是关于二叉树的,我需要参考它们: - 引用[1]:讨论二叉搜索树的中序遍历后继节点。 - 引用[2]:关于如何求二叉树中两个节点的最小公共父节点。 - 引用[3]:在二叉树中查找指定节点,使用前序遍历。 - 引用[4]:二叉树查找指定节点,使用前序查找思路。 用户的问题是关于查找节点的“前一个节点”,在二叉树中,这通常指的是中序遍历序列中的前驱节点(predecessor)。在二叉搜索树中,前驱节点是小于当前节点的最大节点。 在回答中,我应该: 1. 解释什么是前驱节点。 2. 提供Java实现方法。 3. 确保代码正确。 4. 结构清晰,逐步引导。 5. 生成相关问题。 6. 添加引用标识。 步骤: - 先定义问题:在二叉树中,给定一个节点,找到它的前驱节点(中序遍历中的前一个节点)。 - 在二叉搜索树中,前驱节点可以通过以下方式找到: - 如果节点有左子树,则前驱是左子树中的最右节点。 - 如果节点没有左子树,则前驱是最近的祖先节点,使得该节点是祖先节点的右子树的一部分。 - 在普通二叉树中,没有二叉搜索树的性质,所以需要中序遍历整个树来找到前驱节点。但用户可能指的是二叉搜索树,因为引用[1]提到了二叉搜索树。 用户说“二叉树”,没有指定是二叉搜索树,但引用[1]是关于二叉搜索树的。我应该假设是二叉搜索树,因为查找前驱节点在二叉搜索树中有明确定义。 在回答中,我会专注于二叉搜索树,因为那更常见。 Java实现思路: - 方法:给定一个节点,找到它的前驱。 - 步骤: 1. 如果节点有左子树,则前驱是左子树中最右的节点(即左子树的最大节点)。 2. 如果节点没有左子树,则向上遍历父节点,直到找到一个节点,该节点是其父节点的右子节点;那么父节点就是前驱。 在代码中,需要节点有父指针,或者从根开始遍历。 引用[2]提到了父节点,所以可能节点结构包括父指针。 在Java中,节点类可能定义如下: ```java class TreeNode { int val; TreeNode left; TreeNode right; TreeNode parent; // 如果有父指针 } ``` 如果节点没有父指针,就需要从根开始中序遍历来记录前一个节点。 但用户的问题是“查找节点的前一个节点”,可能指的是给定节点对象,找到它的前驱节点对象。 在实现中,最好假设节点有父指针,以简化。 参考引用: - 引用[1]:提到“用后继节点来代替删除的节点”,以及“后继节点”。 - 引用[2]:关于父节点和公共父节点。 - 引用[3]和[4]:关于查找指定节点。 在回答中,我可以引用这些来支持。 结构回答: 1. 介绍前驱节点的概念。 2. 提供Java代码实现。 3. 解释代码。 4. 生成相关问题。 使用中文。 添加引用标识:例如,在解释时,引用相关部分。 最终,相关问题需要生成。 代码格式:使用代码块。</think>### Java 二叉树查找节点的前驱节点方法 在二叉树中,查找给定节点的“前一个节点”通常指的是在中序遍历序列中找到其前驱节点(predecessor)。中序遍历的顺序是“左子树-根节点-右子树”,因此节点的前驱节点是遍历序列中位于该节点之前的节点。在二叉搜索树(BST)中,前驱节点定义为小于当前节点的最大节点;在普通二叉树中,则需要通过遍历来定位[^1]。以下我将逐步解释实现方法,并提供 Java 代码示例。 #### 步骤 1: 理解前驱节点的定义 - **二叉搜索树(BST)**:节点值有序,前驱节点可通过树结构直接定位: - 如果节点有左子树,前驱是左子树中的最右节点(即左子树的最大值节点)。 - 如果节点没有左子树,前驱是最近的祖先节点,且该节点是其父节点的右子节点[^1]。 - **普通二叉树**:节点值无序,需通过中序遍历记录前一个节点来查找,效率较低(时间复杂度 $O(n)$)。 由于用户问题未指定二叉树类型,我将提供适用于二叉搜索树的实现(更高效),并讨论普通二叉树的变通方法。实现前提是树节点包含父指针(`parent`),以简化向上遍历[^2]。 #### 步骤 2: Java 代码实现 以下是一个完整的 Java 示例,包括节点类定义和前驱节点查找方法。代码假设树为二叉搜索树,节点结构包含父指针。 ```java // 树节点类定义,包含父指针 class TreeNode { int val; // 节点值 TreeNode left; // 左子节点 TreeNode right; // 右子节点 TreeNode parent; // 父节点指针 public TreeNode(int val) { this.val = val; this.left = null; this.right = null; this.parent = null; } } public class BinaryTreePredecessor { // 查找给定节点的前驱节点 public TreeNode findPredecessor(TreeNode node) { if (node == null) { return null; } // 情况 1: 节点有左子树,前驱是左子树的最右节点 if (node.left != null) { return findMaxInSubtree(node.left); } // 情况 2: 节点无左子树,向上遍历父节点 TreeNode current = node; TreeNode parent = node.parent; while (parent != null && current == parent.left) { current = parent; // 当前节点是父节点的左子节点,继续向上 parent = parent.parent; } return parent; // 父节点是前驱(或 null,如果节点是树根) } // 辅助方法:查找子树中的最大值节点(最右节点) private TreeNode findMaxInSubtree(TreeNode node) { while (node.right != null) { node = node.right; } return node; } // 示例:测试方法 public static void main(String[] args) { // 构建一个二叉搜索树示例 TreeNode root = new TreeNode(5); TreeNode node3 = new TreeNode(3); TreeNode node7 = new TreeNode(7); TreeNode node2 = new TreeNode(2); TreeNode node4 = new TreeNode(4); TreeNode node6 = new TreeNode(6); TreeNode node8 = new TreeNode(8); // 设置树结构 root.left = node3; node3.parent = root; root.right = node7; node7.parent = root; node3.left = node2; node2.parent = node3; node3.right = node4; node4.parent = node3; node7.left = node6; node6.parent = node7; node7.right = node8; node8.parent = node7; BinaryTreePredecessor finder = new BinaryTreePredecessor(); // 测试节点 4 的前驱(应为节点 3) TreeNode predecessor = finder.findPredecessor(node4); System.out.println("节点 4 的前驱节点值: " + (predecessor != null ? predecessor.val : "null")); // 输出: 3 // 测试节点 5 的前驱(应为节点 4) predecessor = finder.findPredecessor(root); System.out.println("节点 5 的前驱节点值: " + (predecessor != null ? predecessor.val : "null")); // 输出: 4 } } ``` #### 步骤 3: 代码解释 - **节点类 (`TreeNode`)**:包含 `val`、`left`、`right` 和 `parent` 字段,父指针用于向上遍历[^2]。 - **`findPredecessor` 方法**: - **情况 1(有左子树)**:调用 `findMaxInSubtree` 查找左子树的最右节点(时间复杂度 $O(h)$,$h$ 是树高)。 - **情况 2(无左子树)**:向上遍历父节点,直到当前节点是其父节点的右子节点(或到达根节点)。时间复杂度 $O(h)$。 - **测试示例**:构建一个 BST(中序遍历序列:$2 \to 3 \to 4 \to 5 \to 6 \to 7 \to 8$),验证节点 4 的前驱是 3,节点 5 的前驱是 4。 - **普通二叉树的变通**:如果树非 BST 或无父指针,需从根节点中序遍历,记录前一个节点: ```java public TreeNode findPredecessorInGeneral(TreeNode root, TreeNode target) { Stack<TreeNode> stack = new Stack<>(); TreeNode current = root; TreeNode prev = null; while (current != null || !stack.isEmpty()) { while (current != null) { stack.push(current); current = current.left; } current = stack.pop(); if (current == target) { return prev; // 返回前一个节点 } prev = current; current = current.right; } return null; } ``` 此方法时间复杂度 $O(n)$,空间复杂度 $O(n)$,适用于任意二叉树[^3][^4]。 #### 注意事项 - **效率**:在 BST 中,基于父指针的方法平均时间复杂度 $O(\log n)$(平衡树时),最坏 $O(n)$(树退化为链表)。 - **边界情况**:树根节点或最小节点可能无前驱(返回 `null`)。 - **引用说明**:二叉搜索树的前驱定义基于中序遍历有序性[^1],父指针简化了祖先遍历[^2],普通二叉树需全遍历[^3][^4]。 如果您需要普通二叉树的完整代码或进一步优化(如处理无父指针的情况),请提供更多细节!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值