20、C++ 线性拟合函数实现


在这里插入图片描述

引言

在 C++ 中实现线性拟合(Linear Fit),可以通过最小二乘法(Least Squares Method)来计算最佳拟合直线的斜率和截距。以下是一个完整的线性拟合函数实现,包括输入数据点、计算斜率和截距,并输出拟合结果。

过程

线性拟合公式

给定一组数据点 (xi, yi),线性拟合的目标是找到一条直线 (y = mx + b),使得误差平方和最小。斜率和截距的计算公式如下:
在这里插入图片描述
其中:

  • (N) 是数据点的数量。
  • (m) 是斜率。
  • (b) 是截距。

实现代码

#include <iostream>
#include <vector>
#include <tuple>

// 线性拟合函数
std::tuple<double, double> linearFit(const std::vector<double>& x, const std::vector<double>& y) {
	if (x.size() != y.size() || x.empty()) 
		throw std::invalid_argument("Input vectors must be of the same non-zero size.");    	
	}

	size_t N = x.size();
	double sumX = 0.0, sumY = 0.0, sumXY = 0.0, sumX2 = 0.0;
	// 计算各项和
	for (size_t i = 0; i < N; ++i) {
		sumX += x[i];
		sumY += y[i];
		sumXY += x[i] * y[i];
		sumX2 += x[i] * x[i];
	}

	// 计算斜率 (m) 和截距 (b)
	double m = (N * sumXY - sumX * sumY) / (N * sumX2 - sumX * sumX + 1e-5);
	double b = (sumY - m * sumX) / N;
	return std::make_tuple(m, b);
}

int main() {
	// 示例数据点
	std::vector<double> x = {1, 2, 3, 4, 5};
	std::vector<double> y = {2, 4, 5, 4, 5};
	try {
		// 进行线性拟合
		auto [m, b] = linearFit(x, y);
		// 输出结果
		std::cout << "拟合直线方程: y = " << m << " * x + " << b << std::endl;
		// 预测新值
		double newX = 6;
		double predictedY = m * newX + b;
		std::cout << "当 x = " << newX << " 时,预测 y = " << predictedY << std::endl;
	} catch (const std::exception& e) {
		std::cerr << "错误: " << e.what() << std::endl;
	}

	return 0;
}

代码说明

1. 输入数据

  • x 和 y 是两个 std::vector,分别存储数据点的 (x) 和 (y) 坐标。
  • 如果 x 和 y 的大小不一致或为空,会抛出异常。

2. 计算各项和

  • sumX:(x_i) 的总和。
  • sumY:(y_i) 的总和。
  • sumXY:(x_i y_i) 的总和。
  • sumX2:(x_i^2) 的总和。

3. 计算斜率和截距

  • 使用最小二乘法公式计算斜率 (m) 和截距 (b)。

4. 返回结果

  • 使用 std::tuple<double, double> 返回斜率和截距。

5. 预测新值

  • 使用拟合的直线方程 (y = mx + b) 预测新的 (y) 值。

小结

通过最小二乘法实现线性拟合,可以计算出最佳拟合直线的斜率和截距。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值