
图论
文章平均质量分 90
mango114514
有量天尊!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
2-SAT
1. 2−SAT\rm 2-SAT2−SAT 问题简述有 nnn 个变量,每个变量有只有 222 种取值,还有 mmm 个约束条件,每个条件都是对 kkk 个变量的约束。问这 nnn 个变量有没有一种取值方法,能满足这 mmm 个条件,这个问题就是 k−SAT\rm k-SATk−SAT 问题,其中 SAT\text{SAT}SAT 是 satisfiability\text{satisfiability}satisfiability 的缩写,意为“满足性”。当 k>2k>2k>原创 2021-08-19 21:38:53 · 111 阅读 · 0 评论 -
无向图的双连通分量
若一张无向图不存在割点,则称它为“点双连通图“;若一张无向图不存在桥,则称它为”边双连通图“。无向图的极大点双连通子图称为“点双连通分量”,简记为“V-DCC(Vertex Double Connected Component)\text{V-DCC(Vertex Double Connected Component)}V-DCC(Vertex Double Connected Component)”或“点双”;无向图的极大边双连通子图称为“边双原创 2021-08-15 11:53:10 · 314 阅读 · 0 评论 -
无向图的割点与桥
给定无向连通图:对于其中一点 uuu,若从图中删掉 uuu 和所有与 uuu 相连的边后,原图分裂成成 222 个或以上不相连的子图,则称 uuu 为原图的割点(或割顶)。对于其中一边 eee,若从图中删掉 eee 后,原图分裂成 222 个或以上不相连的子图,则称 eee 为原图的桥(或割边)。一般无向图(不保证连通)的割点与桥就是它各个连通块的割点与桥。用 Tarjan\rm TarjanTarjan 算法可以在 O(n)\operatorname{O}(n)O(n) 内求出所有割点与桥。原创 2021-08-15 11:52:39 · 467 阅读 · 0 评论 -
_缩点__
P3387 【模板】缩点缩点,即把一张有向有环图中的 SCC\rm SCCSCC 都缩成一个个点,形成一个 DAG\rm DAGDAG。对于本题,若一个点被选到了,则该点所在的 SCC\rm SCCSCC 中的所有点都可以选到,那当然都要选了。老师:天上掉馅饼,我不选!杠精:我偏不选!所以,我们可以直接把一个 SCC\rm SCCSCC 缩成一个点,这个点的点权 sum(i)sum(i)sum(i) 为原 SCC\rm SCCSCC 内所有点的点权和。首先是找 SCC\rm SCCSCC,直接用原创 2021-08-15 11:51:56 · 113 阅读 · 0 评论 -
有向图的强连通分量
B3609 [图论与代数结构 701] 强连通分量一些概念:若一张有向图中任意两个节点 x,yx,yx,y,存在 xxx 到 yyy 的路径和 yyy 到 xxx 的路径,则称其为强连通图;有向图的极大强连通子图被称为强连通分量。在上文中,一个强连通子图 G′=(V′,E′)(V⊆V,E′⊆E)G'=(V',E')(V\subseteq V,E'\subseteq E)G′=(V′,E′)(V⊆V,E′⊆E) 极大,当且仅当不存在包含 G′G'G′ 的更大子图 G′′=(V′′,E′′)G''=原创 2021-08-15 11:51:23 · 385 阅读 · 0 评论 -
严格次小生成树
前言变态题。调了三四天才调出来。如果最小生成树选择的边集是 EME_MEM,严格次小生成树选择的边集是 ESE_SES,那么需要满足:(value(e)\operatorname{value}(e)value(e) 表示边 eee 的权值)∑e∈EMvalue(e)<∑e∈ESvalue(e)\sum_{e\in E_M}\operatorname{value}(e)<\sum_{e\in E_S}\operatorname{value}(e)∑e∈EMvalue(e)<原创 2021-08-14 21:57:59 · 180 阅读 · 0 评论 -
最近公共祖先
最近公共祖先(Least Common Ancestors\rm Least\,Common\,AncestorsLeastCommonAncestors),简记为 LCA\rm LCALCA。顾名思义就是一棵树中的某两个节点的公共的祖先中离他们最近,即深度最大的那个。举个例子:上图中 888 和 666 的 LCA 就是 111。那么怎么求 LCA 呢?1. 向上标记法思路十分简单。我们现在要求 LCA(x,y)\operatorname{LCA(x,y)}LCA(x,y)。首先从 xxx原创 2021-08-14 21:57:24 · 139 阅读 · 0 评论 -
_欧拉图_
一. 基本概念欧拉图是指通过图(无向图或有向图)中所有边且每边仅通过一次通路,相应的回路称为欧拉回路。具有欧拉回路的图称为欧拉图(EulerGraphEuler GraphEulerGraph),具有欧拉通路而无欧拉回路的图称为半欧拉图。(fromfromfrom百度百科)有没有发现很像小时候玩的一笔画问题?欧拉路分为欧拉通路和欧拉回路欧拉通路:从一个点出发,不重复地经过每条边,从另一个点结束。欧拉回路:从一个点出发,不重复地经过每条边,又回到该点结束。判断方法(性质):无向原创 2021-08-13 11:42:15 · 5845 阅读 · 0 评论 -
差分约束系统
一. 何为差分约束系统?差分约束系统(system of difference constraints),是求解关于一组变数的特殊不等式组之方法。如果一个系统由 nnn 个变量和 mmm 个约束条件组成,其中每个约束条件形如 xi−xj≤bk(i,j∈[1,n],k∈[1,m])x_i - x_j \le b_k (i, j∈[1, n], k∈[1, m])xi−xj≤bk(i,j∈[1,n],k∈[1,m]) ,则称其为差分约束系统。亦即,差分约束系统是求解关于一组变量的特殊不等式组的方法原创 2021-08-13 11:36:44 · 167 阅读 · 0 评论