0 简介
今天学长向大家介绍一个机器视觉的毕设项目,基于深度学习的人脸识别系统
项目运行效果:
毕业设计 糖尿病视网膜预测
项目获取:
https://gitee.com/assistant-a/project-sharing
1 任务目标
这次任务的数据集是1000的糖网的4个等级的眼底图像,我们需要利用深度学习框架pytorch 来根据眼底图像预测其分类。
2 数据处理
1.数据分析
通过对数据统计可以得到(已经划分的训练集):
图片种类的分布是有一点不均匀的,同时图片数量也有一点少,所以我们先简单的对图片数据进行一下扩充,这里我们使用最简单的图片反转作为数据增强的方式。我们对一类的图片进行的左右翻转和上下翻转,扩充为原来的三倍。对二类和三类的图片我们做了上下翻转,扩充到原来的二倍。对零类图片不做任何处理。
这是处理后的训练集分布。
我是7:3分割的训练集和验证集
2.模型训练
2.1模型准备
使用的模型是torchvision.model里的经典模型和预训练好的参数。
from torchvision import models as models
# inception_v3,ResNet50
model = models.resnet50(pretrained=True)
#将pretrained置为true,意思是使用已经预训练好的参数。
model.fc#打印模型全连接层的输入和输出参数
#Linear(in_features=2048, out_features=1000, bias=True)
因为我们是四分类所以调整模型输出为:
model.fc = torch.nn.Linear(in_features=2048, out_features=4, bias=True)
model.aux_logits = False #这个设置是InceptionV3这个模型需要设置的,
#不知道什么意思,但不设置会报错。
2.2参数设置
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device=device)
learning_rate = 1e-4
num_epochs = 10
batch_size = 32
optimizer = torch.optim.Adam(model.parameters(), lr = learning_rate)
loss_criterion = torch.nn.CrossEntropyLoss()