Qwen-Image(阿里通义千问)技术浅析(一)

Qwen-Image(阿里通义千问多模态模型)是阿里巴巴推出的视觉-语言多模态大模型,能够理解图像内容并完成复杂的跨模态任务。


一、核心架构设计

Qwen-Image基于多模态Transformer架构,采用视觉编码器+语言模型的混合设计,核心组件包括:

  1. 视觉编码器(Vision Encoder)

    • 使用ViT(Vision Transformer)或改进的Swin Transformer结构;

    • 输入图像被分割为16x16的patch,通过线性投影得到视觉token;

    • 可能采用CLIP预训练权重初始化,增强视觉表征能力。

  2. 语言模型(LLM Backbone)

    • 基于Qwen-7B/14B等自研语言模型架构;

    • 支持中英双语,扩展了视觉语义理解的特殊token。

  3. 跨模态连接器(Adapter)

    • 可训练模块:将视觉token映射到语言模型语义空间。

    • 采用:

        <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱研究的小牛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值