代码随想录Day44:动态规划(最长公共子序列、不相交的线、最大子序和、判断子序列)

一、实战

1143最长公共子序列

1143. 最长公共子序列 - 力扣(LeetCode)

  • 确定dp数组(dp table)以及下标的含义

dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

  • 确定递推公式

两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

  • dp数组如何初始化

dp[i][0],text1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;同理dp[0][j]也是0。

  • 确定遍历顺序

根据递推公式,从前向后,从上到下来遍历这个矩阵。

  • 举例推导dp数组

package org.example.DP;

public class longestCommonSubsequence1143 {
    /**
     * 计算两个字符串的最长公共子序列(Longest Common Subsequence, LCS)的长度
     * 使用动态规划(Dynamic Programming)方法实现
     *
     * @param text1 第一个字符串
     * @param text2 第二个字符串
     * @return 最长公共子序列的长度
     */
    public int longestCommonSubsequence(String text1, String text2) {
        // 创建 DP 表,dp[i][j] 表示 text1 的前 i-1 个字符 和 text2 的前 j-1 个字符 的最长公共子序列长度
        // 多开一行一列用于处理边界情况(空字符串)
        int[][] dp = new int[text1.length() + 1][text2.length() + 1];

        // 外层循环:遍历 text1 的每一个字符(从第1个到第n个)
        for (int i = 1; i <= text1.length(); i++) {
            char char1 = text1.charAt(i - 1); // 获取 text1 中第 i 个字符(索引为 i-1)

            // 内层循环:遍历 text2 的每一个字符(从第1个到第m个)
            for (int j = 1; j <= text2.length(); j++) {
                char char2 = text2.charAt(j - 1); // 获取 text2 中第 j 个字符(索引为 j-1)

                if (char1 == char2) {
                    // 当前字符匹配,即dp[i-1][j-1] 是去掉当前匹配字符后的 LCS 长度
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    // 当前字符不匹配:取两种情况的最大值
                    // 1. 不考虑 text1 的当前字符(即 dp[i-1][j])
                    // 2. 不考虑 text2 的当前字符(即 dp[i][j-1])
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }

        // dp[text1.length()][text2.length()] 即为整个字符串的 LCS 长度
        return dp[text1.length()][text2.length()];
    }
}

1035不相交的线

1035. 不相交的线 - 力扣(LeetCode)

  • 本质上和上一题是一样的

直线不能相交,这就是说明在字符串nums1中 找到一个与字符串nums2相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,连接相同数字的直线就不会相交。

nums1 = [1,4,2], nums2 = [1,2,4]为例,相交情况如图:

nums1和nums2的最长公共子序列是[1,4],长度为2。 这个公共子序列指的是相对顺序不变(即数字4在字符串nums1中数字1的后面,那么数字4也应该在字符串nums2数字1的后面)。本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!

代码直接在上一题的基础上进行修改

package org.example.DP;

public class maxUncrossedLines1035 {

    /**
     * 计算两个数组之间“不相交连线”的最大数量。
     * 每条线连接 nums1 和 nums2 中相等的元素,且线不能交叉。
     * 本质是求两个数组的最长公共子序列(LCS)长度。
     *
     * @param nums1 第一个整数数组
     * @param nums2 第二个整数数组
     * @return 最大不相交连线数(即最长公共子序列长度)
     */
    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        // 创建 DP 表:dp[i][j] 表示 nums1 的前 i-1 个元素 和 nums2 的前 j-1 个元素 的最长公共子序列长度
        // 多开一行一列,用于处理边界情况(空序列)
        int[][] dp = new int[nums1.length + 1][nums2.length + 1];

        // 遍历 nums1 的每个元素(从第1个到末尾)
        for (int i = 1; i <= nums1.length; i++) {
            int n1 = nums1[i - 1]; // 当前元素值

            // 遍历 nums2 的每个元素
            for (int j = 1; j <= nums2.length; j++) {
                int n2 = nums2[j - 1]; // 当前元素值

                if (n1 == n2) {
                    // 元素相等:可以连一条线,且不与其他线交叉
                    // 当前 LCS 长度 = 之前 LCS 长度 + 1
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    // 元素不相等:不能连线,继承较大值
                    // 要么不考虑 nums1 的当前元素,要么不考虑 nums2 的当前元素
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }

        // 返回整个数组范围内的最大不相交连线数
        return dp[nums1.length][nums2.length];
    }
}

53最大子序和(之前用贪心做过,这里用DP)

53. 最大子数组和 - 力扣(LeetCode)

  • 确定dp数组(dp table)以及下标的含义

以nums[i]为结尾的最大连续子序列和为dp[i]

  • 确定递推公式

dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和

nums[i],即:从头开始计算当前连续子序列和

  • dp数组如何初始化:dp[0] = nums[0]
  • 确定遍历顺序:从前向后
  • 举例推导dp数组

package org.example.DP;

public class maxSubArray53_DP {
    public int maxSubArray(int[] nums) {
       int[] dp=new int[nums.length];
       dp[0]=nums[0];
       int result=dp[0];

       for(int i=1;i< nums.length;i++)
       {
           dp[i]=Math.max(
                   nums[i],
                   nums[i]+dp[i-1]
           );
           if(dp[i]>result)result=dp[i];
       }

       //结果不一定是最后一个
       return result;
    }
}

392判断子序列

392. 判断子序列 - 力扣(LeetCode)

  • 确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。注意这里是判断s是否为t的子序列。即t的长度大于等于s。

  • 确定递推公式
  • f (s[i - 1] == t[j - 1])
    • t中找到了一个字符在s中也出现了
  • if (s[i - 1] != t[j - 1])
    • 相当于t要删除元素,继续匹配

if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1(如果不理解,在回看一下dp[i][j]的定义

if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];

  • dp数组如何初始化

  • 确定遍历顺序:从上到下,从左到右
  • 举例推导dp数组

最后的结果不是dp[nums.size() - 1]! ,而是dp[6]。

/**
 * 判断字符串 s 是否是字符串 t 的子序列(subsequence)
 * 使用动态规划计算 s 和 t 的最长公共子序列长度,若等于 s 的长度,则 s 是 t 的子序列
 *
 * @param s 可能较短的字符串(待判断是否为子序列)
 * @param t 较长的字符串(母串)
 * @return 如果 s 是 t 的子序列,返回 true;否则返回 false
 */
public boolean isSubsequence(String s, String t) {
    int length1 = s.length(); // s 的长度
    int length2 = t.length(); // t 的长度

    // dp[i][j] 表示 s 的前 i-1 个字符 和 t 的前 j-1 个字符 的最长公共子序列(LCS)的长度
    int[][] dp = new int[length1 + 1][length2 + 1];

    for (int i = 1; i <= length1; i++) {
        for (int j = 1; j <= length2; j++) {
            if (s.charAt(i - 1) == t.charAt(j - 1)) {
                // 当前字符匹配:LCS 长度 = 前一个状态 + 1
                dp[i][j] = dp[i - 1][j - 1] + 1;
            } else {
                // 不匹配:继承 t 前一个位置的结果(因为 s 必须连续匹配,不能跳过 s 的字符)
                // 即:考虑 t 的前 j-1 个字符是否能匹配 s 的前 i 个字符
                dp[i][j] = dp[i][j - 1];
            }
        }
    }

    // 如果 s 和 t 的 LCS 长度等于 s 的长度,说明 s 完全被匹配,即 s 是 t 的子序列
    return dp[length1][length2] == length1;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值