Win11家庭版系统配置docker+dify+ollama+deepseek本地部署教程

配置环境(我的系统是win 11家庭版)

打开任务管理器,点击性能,查看cpu虚拟化是否启用(一般正常情况下是开启的)

家庭版需要配置环境

安装Hyper -V

创建一个文本,将以下内容粘贴进去,修改文本后缀.txt为.cmd

pushd "%~dp0"
dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mum >hyper-v.txt
for /f %%i in ('findstr /i . hyper-v.txt 2^>nul') do dism /online /norestart /add-package:"%SystemRoot%\servicing\Packages\%%i"
del hyper-v.txt
Dism /online /enable-feature /featurename:Microsoft-Hyper-V -All /LimitAccess /ALL
pause

然后右键点击以管理员身份运行,运行完成后会在我们的电脑控制面板的程序与功能那,点击启用或关闭windows功能勾选Hyper-V适用于linux的windows子系统(一定要记得重启!!!)

安装WSL(wsl下载速度非常慢,如果运用管理员身份运行wsl --install在终端大概率失败,会出现操作超时等问题)

我们可以访问https://github.com/microsoft/WSL/releases/tag/2.4.5

选择适合自己操作系统的解压包

安装完成后,可以在终端输入wsl -l -v来检查是否成功,如果输出

则成功

接下来去官网下载docker安装包

https://www.docker.com/products/docker-desktop

下载点击安装成功后,需要配置镜像源点击设置,docker Engine

{
  "registry-mirrors" : ["https://docker.registry.cyou",
"https://docker-cf.registry.cyou",
"https://dockercf.jsdelivr.fyi",
"https://docker.jsdelivr.fyi",
"https://dockertest.jsdelivr.fyi",
"https://mirror.aliyuncs.com",
"https://dockerproxy.com",
"https://mirror.baidubce.com",
"https://docker.m.daocloud.io",
"https://docker.nju.edu.cn",
"https://docker.mirrors.sjtug.sjtu.edu.cn",
"https://docker.mirrors.ustc.edu.cn",
"https://mirror.iscas.ac.cn",
"https://docker.rainbond.cc",
"https://do.nark.eu.org",
"https://dc.j8.work",
"https://dockerproxy.com",
"https://gst6rzl9.mirror.aliyuncs.com",
"https://registry.docker-cn.com",
"http://hub-mirror.c.163.com",
"http://mirrors.ustc.edu.cn/",
"https://mirrors.tuna.tsinghua.edu.cn/",
"http://mirrors.sohu.com/" 
],
 "insecure-registries" : [
    "registry.docker-cn.com",
    "docker.mirrors.ustc.edu.cn"
    ],
"debug": true,
"experimental": false
}

点击应用并重启

在终端检查是否成功

如果看到这样的结果就代表启动成功了

安装dify去官网下载安装包

先进自己解压好的dify目录下

终端cd进去这个目录

再输入这个命令:copy .env.example .env进行复制

使用 Docker Compose 启动项目中定义的所有服务,并以后台模式运行

问访问http://localhost/install

注册账号然后登录进入工作台

停止dify服务

启动服务

安装部署ollama

接入本地 Ollama 模型到 Dify 的完整步骤:

  1. 拉取 Ollama 镜像

打开命令行工具,运行以下命令从 Docker Hub 拉取 Ollama 镜像:

如果下载速度缓慢,可使用国内镜像源加速,例如:

docker pull docker.m.daocloud.io/ollama/ollama:latest

  1. 运行 Ollama 容器

拉取镜像后,运行以下命令启动 Ollama 容器:

docker run -d --name ollama -p 11434:11434 ollama/ollama

此命令将 Ollama 服务暴露在主机的 11434 端口上。

  1. 验证 Ollama 是否正常运行

在命令行中运行以下命令,查看 Ollama 容器是否正常运行

docker ps

访问http://localhost:11434,若出现下面则成功

访问https://github.com/ollama/ollama/releases

下载客户端ollama模型

下载成功后 将ollama.exe路径放到系统的path下

在终端运行 ollama list

出现则成功拉取 deepseek-r1:1.5b 模型。打开命令行工具,运行以下命令:

 

ollama pull deepseek-r1:1.5b

查看:

在dify中安装好的ollama添加模型

成功接入:

### 使用 Docker 部署 DifyOllamaDeepSeek 为了在本地服务器上使用 Docker 部署 DifyOllamaDeepSeek,并让其他终端可以访问 DeepSeek,需遵循一系列配置步骤。 #### 准备工作 确保已安装并配置好 Docker 环境。对于 Windows 或 Mac 用户来说,这通常意味着已经安装了 Docker Desktop;而对于 Linux 用户,则可能需要单独安装 Docker Engine[^1]。 #### 启动 Ollama 容器 由于 `docker run` 不会自动将命令添加至主机的 PATH 变量中,在启动 OllamaDocker 容器之后,如果希望执行容器内部的特定命令,应该利用 `docker exec` 来进入该容器环境内操作[^2]: ```bash docker pull ollama/image_name # 替换 image_name 为实际镜像名称 docker run -d --name ollama-container-name ollama/image_name ``` #### 设置网络连接 为了让不同服务之间互相通信顺畅,建议创建一个新的 Docker 网络以便于管理各个组件间的交互。同时设置正确的 DNS 解析规则来简化跨容器调用过程中的域名解析问题[^3]: ```bash docker network create my-network docker run -d \ --network=my-network \ --add-host=host.docker.internal:host-gateway \ --name ollama-service \ ollama/image_name ``` 这里 `-d` 参数表示后台运行模式,而 `--add-host` 则用于向 `/etc/hosts` 文件追加条目以实现对宿主机的服务发现功能。 #### 修改 .env 文件 编辑 `.env` 文件以激活自定义模型支持以及设定 Ollama API 地址。此文件位于项目根目录下,默认情况下可以通过 VSCode 打开修改。具体参数如下所示[^4]: ```plaintext CUSTOM_MODEL_ENABLED=true OLLAMA_API_BASE_URL=http://host.docker.internal:11434/ ``` 请注意这里的 URL 应当指向之前提到过的 Ollama 服务实例所在位置。 #### 远程访问配置 要使得外部设备能顺利访问部署好的应用,还需要考虑防火墙策略及端口映射等问题。假设目标是开放 HTTP(S) 协议下的 Web 接口给公网用户,则可以在启动容器时增加相应选项完成端口转发任务: ```bash docker run -p host_port:container_port ... ``` 其中 `host_port` 是指本机监听的具体数值(比如80),而 `container_port` 对应着应用程序本身所占用的那个值(例如9200)。当然也可以直接暴露整个范围内的多个连续端口号供选择使用。 另外一种方法就是借助反向代理工具 Nginx 或 Traefik 实现更灵活的安全性和负载均衡特性控制。 #### 测试连通性 最后一步便是验证一切正常运作无误。可以从另一台机器发起请求测试是否成功建立了连接关系。如果是基于 RESTful 架构构建的应用程序的话,那么 curl 工具将会是非常方便的选择之一。 ```bash curl http://your_server_ip_or_domain:port/path ``` 以上即是在本地服务器环境中通过 Docker 部署 DifyOllamaDeepSeek 并允许远程终端访问的方法概述。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值