基于动态蛇形卷积与DCNv2优化的YOLOv8草莓分级与分割系统 高精度草莓图像分割与分级、深度学习目标检测 YOLOv8改进系统、草莓图像分割、品质分类与数据分析 高精度图像处理与智能分级平台

博主介绍:
    ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W+粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台的优质作者。通过长期分享和实战指导,我致力于帮助更多学生完成毕业项目和技术提升。

技术范围:
    我熟悉的技术领域涵盖SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等方面的设计与开发。如果你有任何技术难题,我都乐意与你分享解决方案。

 为什么选择阅读我:

我是程序阿龙,专注于软件开发,拥有丰富的编程能力和实战经验。在过去的几年里,我辅导了上千名学生,帮助他们顺利完成毕业项目,同时我的技术分享也吸引了超过50W+的粉丝。我是CSDN特邀作者、博客专家、新星计划导师,并在Java领域内获得了多项荣誉,如博客之星。我的作品也被掘金、华为云、阿里云、InfoQ等多个平台推荐,成为各大平台的优质作者。

🍅获取源码请在文末联系我🍅

目录:

一、详细操作演示视频       在文章的尾声,您会发现一张电子名片👤,欢迎通过名片上的联系方式与我取得联系,以获取更多关于项目演示的详尽视频内容。视频将帮助您全面理解项目的关键点和操作流程。期待与您的进一步交流!

开发的基础知识!!

1. 研究背景与意义

动态蛇形卷积

DCNv2

研究的意义

1. 图片收集

使用eiseg进行标注

2. 格式转换:从VOC到YOLO格式

使用Python脚本进行格式转换

3. 数据集的拆分

1. 数据结构与目标

2. 代码分析

3. 主要功能

4. 如何使用这个函数

5. 如何改进或扩展

源码获取

文章下方名片联系我即可~大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻精彩专栏推荐订阅:在下方专栏👇🏻

一、详细操作演示视频
       在文章的尾声,您会发现一张电子名片👤,欢迎通过名片上的联系方式与我取得联系,以获取更多关于项目演示的详尽视频内容。视频将帮助您全面理解项目的关键点和操作流程。期待与您的进一步交流!

开发的基础知识!!

1. 研究背景与意义

随着计算机视觉技术的飞速发展,图像分割技术在各个领域,特别是农业领域,展现出越来越重要的应用价值。图像分割能够将图像中的不同对象或区域进行有效的分离,进而帮助实现对图像内容的精准理解。在农业中,图像分割被广泛应用于农作物的生长监测、病虫害检测、果实分级等方面。

草莓作为一种重要的经济作物,其分级分割在农产品的质量控制和市场营销中占据着关键地位。传统的草莓分级工作通常依赖人工操作,这不仅效率低下,而且容易受到主观因素的影响,难以确保一致性和准确性。因此,开发一个自动化的草莓分级分割系统,不仅有助于提高工作效率,还有助于提高草莓的市场竞争力和生产效益。

随着深度学习技术的不断进步,基于卷积神经网络(CNN)的图像分割技术取得了显著成果。YOLO系列作为目前最为广泛应用的目标检测算法之一,凭借其高效性和实时性被广泛应用于各种视觉任务中。然而,YOLOv8在草莓分级分割任务中仍面临一定挑战,主要体现在以下几个方面:

  1. 对小尺寸草莓的检测不够准确,YOLOv8对小物体的定位能力相对较弱,难以精确区分小尺寸草莓与背景或其他草莓的边界。
  2. 对草莓形状的识别能力有限,草莓具有较为复杂的形态,尤其在重叠或者部分遮挡的情况下,YOLOv8的识别准确度和鲁棒性受到影响。

为了克服这些问题,本研究提出了一种改进的YOLOv8草莓分级分割系统,该系统融合了动态蛇形卷积和**DCNv2(Deformable Convolutional Networks V2)**两种先进技术。

动态蛇形卷积

动态蛇形卷积是一种新型的卷积操作方式,能够更有效地捕捉图像中物体的形态和边缘信息。其通过动态调整卷积核的形状和位置,使得网络能够适应不同物体的几何形态,尤其对于形态复杂、边缘不规则的物体如草莓,其性能表现尤为出色。

DCNv2

DCNv2是一种轻量级的网络结构,具有更高的计算效率和性能。与传统的卷积操作相比,DCNv2通过引入可变形卷积,能够更精确地捕捉图像中的局部特征,尤其是在存在形态变化和局部遮挡的情况下,表现出更强的适应性和检测性能。其轻量级特性也能有效减少计算开销,提高模型的运行速度,尤其适用于实时草莓分级分割任务。

研究的意义

  1. 提高草莓分级准确性:通过引入动态蛇形卷积,改进的YOLOv8能够更好地捕捉草莓的形状信息,尤其对于小尺寸草莓,能够显著提高检测的准确性。DCNv2的引入进一步增强了模型对复杂形态和局部细节的感知能力,提升了分割精度。

  2. 提高草莓分级分割效率:DCNv2作为一种轻量级的网络结构,能有效减少模型的参数量和计算量,从而提高模型的推理速度,尤其适用于需要实时响应的农业生产环境中。系统的高效性能够显著提升草莓分级的工作效率,降低成本。

  3. 推动农业智能化发展:本研究提出的自动化草莓分级分割系统,不仅能够提高草莓的质量控制和市场竞争力,还能为农业生产带来更高的效益。通过自动化的技术手段,减少人工干预,不仅提高了工作效率,还能够保证分级的准确性和一致性。

  4. 为其他农作物分级分割提供借鉴:本研究中采用的动态蛇形卷积和DCNv2的结合,不仅适用于草莓的分级分割,还可以推广到其他农作物的图像分割任务中,为未来农业智能化的技术创新提供重要参考。

在构建一个草莓分级分割系统的过程中,数据的收集和标注是至关重要的一步。以下是数据收集与标注的详细过程,特别是如何将图片和其对应的标注数据转化为YOLO格式,进而为后续的模型训练做准备。

1. 图片收集

首先,我们需要收集用于训练和测试的草莓图片。图片的来源可以是现有的公开数据集(例如CMDatasets)或通过手工采集。通过这些图片,我们可以利用图像标注工具(例如eiseg)进行标注。eiseg支持COCO格式和YOLO格式的标注,因此我们可以直接使用它来创建适合YOLO的标注数据。

使用eiseg进行标注

步骤:

  1. 下载并安装eiseg工具: 可以从eiseg官方网站或其GitHub页面下载并安装此工具。

  2. 选择图片目录: 打开eiseg,选择“Open Dir”来选择图片所在的文件夹。

  3. 设置标签: 为草莓设定相应的标签,如“草莓”或“果实”标签。

  4. 标注图片: 在每张图片上绘制矩形框并选择标签。每个矩形框代表草莓在图像中的位置。

  5. 保存标注信息: 在eiseg完成标注后,保存标注文件。保存后的标注信息会以JSON文件的形式存储在图片目录下。

  6. 重复标注: 对每张图片都执行上述标注步骤,直到所有的图片都完成标注。

2. 格式转换:从VOC到YOLO格式

由于YOLO使用的是特定的标注格式(.txt文件),而eiseg默认生成的是COCO格式或VOC格式,因此我们需要将VOC格式转换为YOLO所需的格式。

使用Python脚本进行格式转换

我们可以编写Python脚本来处理这种格式转换。以下是一个简单的Python脚本,用于将VOC格式的标注转换为YOLO格式的标注。

import os
import json
import numpy as np
from pathlib import Path
from PIL import Image
from tqdm import tqdm

def convert_voc_to_yolo(voc_json_dir, output_dir):
    # 创建输出文件夹
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # 获取所有VOC格式的JSON标注文件
    json_files = [f for f in Path(voc_json_dir).rglob('*.json')]

    for json_file in tqdm(json_files, desc="Processing VOC JSON files"):
        with open(json_file, 'r') as f:
            data = json.load(f)

        # 获取图像的宽高
        img_filename = Path(data['image']['filename'])
        img_path = img_filename.parent / img_filename.name
        img = Image.open(img_path)
        img_width, img_height = img.size

        # 获取标注信息
        annotations = data['annotations']

        # 创建对应的YOLO格式的标注文件
        yolo_annotation = []
        for ann in annotations:
            # 计算标注框的xywh格式
            xmin, ymin, xmax, ymax = ann['bbox']
            x_center = (xmin + xmax) / 2 / img_width
            y_center = (ymin + ymax) / 2 / img_height
            width = (xmax - xmin) / img_width
            height = (ymax - ymin) / img_height

            # 假设只包含草莓类别(即类别为0)
            yolo_annotation.append(f"0 {x_center} {y_center} {width} {height}")

        # 将YOLO标注保存到.txt文件中
        txt_file = output_dir + '/' + img_filename.stem + '.txt'
        with open(txt_file, 'w') as f:
            f.write('\n'.join(yolo_annotation))

    print(f"YOLO annotations saved to {output_dir}")

# 调用函数进行转换
convert_voc_to_yolo('path_to_voc_json_files', 'output_yolo_labels')

该脚本会将VOC格式的JSON标注文件转换为YOLO格式。每张图片会生成一个相应的.txt文件,其中包含标注的位置信息。

3. 数据集的拆分

在准备好所有的标注数据后,我们通常需要将数据集分为训练集、验证集和测试集。这可以通过编写脚本或手动完成。

import random
import os
from shutil import copyfile

def split_data(image_dir, label_dir, output_dir, train_ratio=0.8, val_ratio=0.1, test_ratio=0.1):
    # 获取所有图片和标签文件
    image_files = [f for f in os.listdir(image_dir) if f.endswith('.jpg')]
    label_files = [f for f in os.listdir(label_dir) if f.endswith('.txt')]

    # 确保图片和标签文件一一对应
    image_files.sort()
    label_files.sort()

    # 打乱数据顺序
    combined = list(zip(image_files, label_files))
    random.shuffle(combined)
    image_files, label_files = zip(*combined)

    # 计算数据集大小
    total_images = len(image_files)
    train_size = int(total_images * train_ratio)
    val_size = int(total_images * val_ratio)
    test_size = total_images - train_size - val_size

    # 分别保存训练集、验证集和测试集的图片和标签
    def save_files(file_list, split_name):
        split_dir = os.path.join(output_dir, split_name)
        os.makedirs(split_dir, exist_ok=True)
        for file in file_list:
            copyfile(os.path.join(image_dir, file[0]), os.path.join(split_dir, file[0]))
            copyfile(os.path.join(label_dir, file[1]), os.path.join(split_dir, file[1]))

    # 保存训练集、验证集和测试集
    save_files(list(zip(image_files[:train_size], label_files[:train_size])), 'train')
    save_files(list(zip(image_files[train_size:train_size+val_size], label_files[train_size:train_size+val_size])), 'val')
    save_files(list(zip(image_files[train_size+val_size:], label_files[train_size+val_size:])), 'test')

# 调用函数进行数据集拆分
split_data('path_to_images', 'path_to_labels', 'output_dir')
  1. YOLOv8算法原理

YOLOv8是由Glenn Jocher提出的,继承了YOLOv3和YOLOv5的设计理念,并在其基础上做了若干重要改进。具体改进如下:

  1. 数据预处理
    YOLOv8沿用了YOLOv5的预处理策略,采用了多种增强手段,包括:

    • 马赛克增强(Mosaic)
    • 混合增强(Mixup)
    • 空间扰动(RandomPerspective)
    • 颜色扰动(HSV augment)
      这些增强手段能有效提升模型对多样化数据的泛化能力。
  2. 骨干网络结构
    YOLOv8的骨干网络结构在YOLOv5的基础上做了优化。YOLOv5使用C3模块进行特征提取,每个模块通过步长为2的3×3卷积进行降采样,并结合C3模块增强特征表示。YOLOv8则将C3模块替换为C2f模块(Channel-Focused Feature Fusion Module),这一模块引入了更多的分支,改善了梯度回传时的流动,使得特征提取更为高效。

  3. FPN-PAN结构
    YOLOv8依旧采用FPN+PAN结构用于构建特征金字塔。这使得多尺度信息能够得到有效融合,提升了对不同尺度物体的检测能力。唯一的变化是YOLOv8将FPN-PAN中的C3模块替换为C2f模块,其他部分与YOLOv5相似。

  4. 检测头结构
    YOLOv8使用了解耦头(Decoupled Head),这一结构先通过两条并行分支分别提取类别和位置特征,再用1×1卷积完成分类和定位任务。相较于YOLOv3和YOLOv5的耦合头,这种解耦头结构在分类和定位任务上更加高效。

  5. 标签分配策略
    YOLOv8优化了标签分配策略,使用动态标签分配策略(与YOLOv6的TOOD类似)。TOOD策略可以动态地根据目标框的质量分配正负样本,这在处理多尺度问题时,能够有效减少由于不合理标签分配导致的误差。YOLOv8不使用传统的候选框聚类方法,而是采用目标框和目标得分的动态匹配策略。

  6. 损失函数
    YOLOv8使用了两个核心的损失函数来优化模型:

    • Varifocal Loss (VFL Loss):用于类别损失,这种损失函数能够根据预测类别的准确性调整正负样本的权重,降低低质量样本的影响,提高高质量正样本对损失的贡献。
    • CIoU Loss 和 DFL Loss:这两个损失函数用于回归任务,CIoU(Complete Intersection over Union)用于捕捉边界框的几何相似度,DFL(Distance-Focal Loss)则进一步优化了回归的准确性。


  1. 动态蛇形卷积(Dynamic Snake Convolution)

动态蛇形卷积(DSC)是一种为解决管状结构(如血管、道路等)精确分割问题而提出的卷积操作。管状结构往往具有细长且曲折的局部特征,并且其全局形态可能会有所变化,这给精确分割带来了挑战。DSC的核心思想是通过动态调整卷积核形状,使其像蛇一样能够自适应地弯曲和扭动,从而贴合目标结构的特征。

  • 特征提取阶段:通过引入动态蛇形卷积核,能够自适应捕捉管状结构的局部细节,如曲折、弯曲等形态。
  • 特征融合阶段:为了进一步增强管状结构的识别能力,采用了多视角特征融合策略,从多个角度同时对目标进行关注,确保捕获不同全局形态下的特征。
  • 损失约束阶段:为了保持分割结果的拓扑连续性,提出了基于持久同源性的损失函数。该约束确保分割结果在拓扑结构上保持连贯性,避免断裂或过度分离。

这种方法在2D和3D数据集上的实验中表现出了显著的优势,特别是在复杂的管状结构分割任务中,能够提供更高的准确性和连续性。


  1. DCNv2与YOLOv8的融合

DCN(Deformable Convolution)和其升级版DCNv2(Deformable Convolution v2)主要用于解决常规卷积无法处理的复杂目标几何变换问题。DCN通过引入可变的卷积核,能够适应目标的形变和几何变换,而不再局限于固定形状的卷积操作。

  • DCNv1:解决了传统卷积在处理仿射变换时的局限性,如目标的旋转、缩放、透视变换等。
  • DCNv2:相比DCNv1,DCNv2进一步提升了卷积核的灵活性,使其能够处理更加复杂的目标变换,并且在计算上进行了优化,提升了效率。

在YOLOv8中,DCNv2被集成到模型中,使得卷积层能够动态适应目标的几何形状变换。这对于处理像人、车辆等具有高度变化形态的物体,尤其是小物体检测,提升了模型的检测精度和泛化能力。

1. 数据结构与目标

该代码的目标是绘制每个类别(如类别B和类别M)在不同训练纪元(Epoch)下的mAP指标趋势。data是一个包含了训练过程所有信息的DataFrame,每一列代表训练过程中的某项度量,如训练损失、验证损失、学习率和各类别的mAP等。

2. 代码分析

# Correcting the mAP plotting function with the right column names
def plot_map_metrics(data, category, title):
    plt.figure(figsize=(15, 6))

    # Filtering columns for mAP
    map_cols = [col for col in data.columns if col.startswith(f'metrics/mAP') and col.endswith(f'({category})')]

    # Plotting the mAP metrics
    for col in map_cols:
        sns.lineplot(data=data, x='epoch', y=col.strip(), label=col.strip())  # Stripping whitespace from column names

    plt.title(title)
    plt.xlabel('Epoch')
    plt.ylabel('mAP')
    plt.legend()
    plt.show()

# Replotting the mAP for categories B and M with corrected column names
plot_map_metrics(data, 'B', 'Mean Average Precision (mAP) for Category B Over Epochs')
plot_map_metrics(data, 'M', 'Mean Average Precision (mAP) for Category M Over Epochs')

3. 主要功能

  • **plot_map_metrics**函数的作用是:

    • 接收一个数据集(data)、一个类别(如BM)和一个标题(title)。
    • data数据集中查找所有以metrics/mAP开头并以指定类别(如BM)结尾的列。
    • 利用seabornlineplot函数绘制出每个epoch对应的mAP变化趋势。
    • 最后显示图表,图表上有每个类别的mAPepoch变化的曲线。
  • sns.lineplot:用来绘制训练过程中的mAP变化曲线。通过x='epoch',横坐标是训练纪元数,y=col.strip(),纵坐标是mAP值。

4. 如何使用这个函数

  1. 数据格式:假设data是一个包含训练过程详细信息的Pandas DataFrame,其中每列包括不同的度量指标,如损失函数、精度等。metrics/mAP(B)metrics/mAP(M)是列名的一部分,用于表示不同类别(B和M)的mAP。

  2. 调用

    • 你调用plot_map_metrics(data, 'B', 'Mean Average Precision (mAP) for Category B Over Epochs')时,表示你要绘制类别B的mAP随训练纪元(Epoch)变化的趋势图。
    • 同理,调用plot_map_metrics(data, 'M', 'Mean Average Precision (mAP) for Category M Over Epochs')时,会绘制类别M的mAP趋势图。

5. 如何改进或扩展

  • 多个指标一起展示:如果你想把训练过程中的其他指标(如训练损失、验证损失)一起展示,可以在图表中添加额外的线条来表示这些指标。
  • 可视化其他类别:假如你的数据集有更多类别,可以通过循环遍历类别,批量绘制每个类别的mAP变化趋势。
  • 结合精度与召回率:除了mAP,还可以绘制**精度(Precision)召回率(Recall)**随epoch变化的图表,帮助全面了解模型的表现。

  • 源码获取
    文章下方名片联系我即可~
    大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻
    精彩专栏推荐订阅:在下方专栏👇🏻
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员阿龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值