博主介绍:
✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W+粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台的优质作者。通过长期分享和实战指导,我致力于帮助更多学生完成毕业项目和技术提升。技术范围:
我熟悉的技术领域涵盖SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等方面的设计与开发。如果你有任何技术难题,我都乐意与你分享解决方案。为什么选择阅读我:
我是程序阿龙,专注于软件开发,拥有丰富的编程能力和实战经验。在过去的几年里,我辅导了上千名学生,帮助他们顺利完成毕业项目,同时我的技术分享也吸引了超过50W+的粉丝。我是CSDN特邀作者、博客专家、新星计划导师,并在Java领域内获得了多项荣誉,如博客之星。我的作品也被掘金、华为云、阿里云、InfoQ等多个平台推荐,成为各大平台的优质作者。
🍅获取源码请在文末联系我🍅
目录:
文章下方名片联系我即可~大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻精彩专栏推荐订阅:在下方专栏👇🏻
一、详细操作演示视频
在文章的尾声,您会发现一张电子名片👤,欢迎通过名片上的联系方式与我取得联系,以获取更多关于项目演示的详尽视频内容。视频将帮助您全面理解项目的关键点和操作流程。期待与您的进一步交流!
开发的基础知识!!
1. 研究背景与意义
随着计算机视觉技术的飞速发展,图像分割技术在各个领域,特别是农业领域,展现出越来越重要的应用价值。图像分割能够将图像中的不同对象或区域进行有效的分离,进而帮助实现对图像内容的精准理解。在农业中,图像分割被广泛应用于农作物的生长监测、病虫害检测、果实分级等方面。
草莓作为一种重要的经济作物,其分级分割在农产品的质量控制和市场营销中占据着关键地位。传统的草莓分级工作通常依赖人工操作,这不仅效率低下,而且容易受到主观因素的影响,难以确保一致性和准确性。因此,开发一个自动化的草莓分级分割系统,不仅有助于提高工作效率,还有助于提高草莓的市场竞争力和生产效益。
随着深度学习技术的不断进步,基于卷积神经网络(CNN)的图像分割技术取得了显著成果。YOLO系列作为目前最为广泛应用的目标检测算法之一,凭借其高效性和实时性被广泛应用于各种视觉任务中。然而,YOLOv8在草莓分级分割任务中仍面临一定挑战,主要体现在以下几个方面:
- 对小尺寸草莓的检测不够准确,YOLOv8对小物体的定位能力相对较弱,难以精确区分小尺寸草莓与背景或其他草莓的边界。
- 对草莓形状的识别能力有限,草莓具有较为复杂的形态,尤其在重叠或者部分遮挡的情况下,YOLOv8的识别准确度和鲁棒性受到影响。
为了克服这些问题,本研究提出了一种改进的YOLOv8草莓分级分割系统,该系统融合了动态蛇形卷积和**DCNv2(Deformable Convolutional Networks V2)**两种先进技术。
动态蛇形卷积
动态蛇形卷积是一种新型的卷积操作方式,能够更有效地捕捉图像中物体的形态和边缘信息。其通过动态调整卷积核的形状和位置,使得网络能够适应不同物体的几何形态,尤其对于形态复杂、边缘不规则的物体如草莓,其性能表现尤为出色。
DCNv2
DCNv2是一种轻量级的网络结构,具有更高的计算效率和性能。与传统的卷积操作相比,DCNv2通过引入可变形卷积,能够更精确地捕捉图像中的局部特征,尤其是在存在形态变化和局部遮挡的情况下,表现出更强的适应性和检测性能。其轻量级特性也能有效减少计算开销,提高模型的运行速度,尤其适用于实时草莓分级分割任务。
研究的意义
-
提高草莓分级准确性:通过引入动态蛇形卷积,改进的YOLOv8能够更好地捕捉草莓的形状信息,尤其对于小尺寸草莓,能够显著提高检测的准确性。DCNv2的引入进一步增强了模型对复杂形态和局部细节的感知能力,提升了分割精度。
-
提高草莓分级分割效率:DCNv2作为一种轻量级的网络结构,能有效减少模型的参数量和计算量,从而提高模型的推理速度,尤其适用于需要实时响应的农业生产环境中。系统的高效性能够显著提升草莓分级的工作效率,降低成本。
-
推动农业智能化发展:本研究提出的自动化草莓分级分割系统,不仅能够提高草莓的质量控制和市场竞争力,还能为农业生产带来更高的效益。通过自动化的技术手段,减少人工干预,不仅提高了工作效率,还能够保证分级的准确性和一致性。
-
为其他农作物分级分割提供借鉴:本研究中采用的动态蛇形卷积和DCNv2的结合,不仅适用于草莓的分级分割,还可以推广到其他农作物的图像分割任务中,为未来农业智能化的技术创新提供重要参考。
在构建一个草莓分级分割系统的过程中,数据的收集和标注是至关重要的一步。以下是数据收集与标注的详细过程,特别是如何将图片和其对应的标注数据转化为YOLO格式,进而为后续的模型训练做准备。
1. 图片收集
首先,我们需要收集用于训练和测试的草莓图片。图片的来源可以是现有的公开数据集(例如CMDatasets)或通过手工采集。通过这些图片,我们可以利用图像标注工具(例如eiseg)进行标注。eiseg支持COCO格式和YOLO格式的标注,因此我们可以直接使用它来创建适合YOLO的标注数据。
使用eiseg进行标注
步骤:
-
下载并安装eiseg工具: 可以从eiseg官方网站或其GitHub页面下载并安装此工具。
-
选择图片目录: 打开eiseg,选择“Open Dir”来选择图片所在的文件夹。
-
设置标签: 为草莓设定相应的标签,如“草莓”或“果实”标签。
-
标注图片: 在每张图片上绘制矩形框并选择标签。每个矩形框代表草莓在图像中的位置。
-
保存标注信息: 在eiseg完成标注后,保存标注文件。保存后的标注信息会以JSON文件的形式存储在图片目录下。
-
重复标注: 对每张图片都执行上述标注步骤,直到所有的图片都完成标注。
2. 格式转换:从VOC到YOLO格式
由于YOLO使用的是特定的标注格式(.txt文件),而eiseg默认生成的是COCO格式或VOC格式,因此我们需要将VOC格式转换为YOLO所需的格式。
使用Python脚本进行格式转换
我们可以编写Python脚本来处理这种格式转换。以下是一个简单的Python脚本,用于将VOC格式的标注转换为YOLO格式的标注。
import os
import json
import numpy as np
from pathlib import Path
from PIL import Image
from tqdm import tqdm
def convert_voc_to_yolo(voc_json_dir, output_dir):
# 创建输出文件夹
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# 获取所有VOC格式的JSON标注文件
json_files = [f for f in Path(voc_json_dir).rglob('*.json')]
for json_file in tqdm(json_files, desc="Processing VOC JSON files"):
with open(json_file, 'r') as f:
data = json.load(f)
# 获取图像的宽高
img_filename = Path(data['image']['filename'])
img_path = img_filename.parent / img_filename.name
img = Image.open(img_path)
img_width, img_height = img.size
# 获取标注信息
annotations = data['annotations']
# 创建对应的YOLO格式的标注文件
yolo_annotation = []
for ann in annotations:
# 计算标注框的xywh格式
xmin, ymin, xmax, ymax = ann['bbox']
x_center = (xmin + xmax) / 2 / img_width
y_center = (ymin + ymax) / 2 / img_height
width = (xmax - xmin) / img_width
height = (ymax - ymin) / img_height
# 假设只包含草莓类别(即类别为0)
yolo_annotation.append(f"0 {x_center} {y_center} {width} {height}")
# 将YOLO标注保存到.txt文件中
txt_file = output_dir + '/' + img_filename.stem + '.txt'
with open(txt_file, 'w') as f:
f.write('\n'.join(yolo_annotation))
print(f"YOLO annotations saved to {output_dir}")
# 调用函数进行转换
convert_voc_to_yolo('path_to_voc_json_files', 'output_yolo_labels')
该脚本会将VOC格式的JSON标注文件转换为YOLO格式。每张图片会生成一个相应的.txt
文件,其中包含标注的位置信息。
3. 数据集的拆分
在准备好所有的标注数据后,我们通常需要将数据集分为训练集、验证集和测试集。这可以通过编写脚本或手动完成。
import random
import os
from shutil import copyfile
def split_data(image_dir, label_dir, output_dir, train_ratio=0.8, val_ratio=0.1, test_ratio=0.1):
# 获取所有图片和标签文件
image_files = [f for f in os.listdir(image_dir) if f.endswith('.jpg')]
label_files = [f for f in os.listdir(label_dir) if f.endswith('.txt')]
# 确保图片和标签文件一一对应
image_files.sort()
label_files.sort()
# 打乱数据顺序
combined = list(zip(image_files, label_files))
random.shuffle(combined)
image_files, label_files = zip(*combined)
# 计算数据集大小
total_images = len(image_files)
train_size = int(total_images * train_ratio)
val_size = int(total_images * val_ratio)
test_size = total_images - train_size - val_size
# 分别保存训练集、验证集和测试集的图片和标签
def save_files(file_list, split_name):
split_dir = os.path.join(output_dir, split_name)
os.makedirs(split_dir, exist_ok=True)
for file in file_list:
copyfile(os.path.join(image_dir, file[0]), os.path.join(split_dir, file[0]))
copyfile(os.path.join(label_dir, file[1]), os.path.join(split_dir, file[1]))
# 保存训练集、验证集和测试集
save_files(list(zip(image_files[:train_size], label_files[:train_size])), 'train')
save_files(list(zip(image_files[train_size:train_size+val_size], label_files[train_size:train_size+val_size])), 'val')
save_files(list(zip(image_files[train_size+val_size:], label_files[train_size+val_size:])), 'test')
# 调用函数进行数据集拆分
split_data('path_to_images', 'path_to_labels', 'output_dir')
- YOLOv8算法原理
YOLOv8是由Glenn Jocher提出的,继承了YOLOv3和YOLOv5的设计理念,并在其基础上做了若干重要改进。具体改进如下:
-
数据预处理
YOLOv8沿用了YOLOv5的预处理策略,采用了多种增强手段,包括:- 马赛克增强(Mosaic)
- 混合增强(Mixup)
- 空间扰动(RandomPerspective)
- 颜色扰动(HSV augment)
这些增强手段能有效提升模型对多样化数据的泛化能力。
-
骨干网络结构
YOLOv8的骨干网络结构在YOLOv5的基础上做了优化。YOLOv5使用C3模块进行特征提取,每个模块通过步长为2的3×3卷积进行降采样,并结合C3模块增强特征表示。YOLOv8则将C3模块替换为C2f模块(Channel-Focused Feature Fusion Module),这一模块引入了更多的分支,改善了梯度回传时的流动,使得特征提取更为高效。 -
FPN-PAN结构
YOLOv8依旧采用FPN+PAN结构用于构建特征金字塔。这使得多尺度信息能够得到有效融合,提升了对不同尺度物体的检测能力。唯一的变化是YOLOv8将FPN-PAN中的C3模块替换为C2f模块,其他部分与YOLOv5相似。 -
检测头结构
YOLOv8使用了解耦头(Decoupled Head),这一结构先通过两条并行分支分别提取类别和位置特征,再用1×1卷积完成分类和定位任务。相较于YOLOv3和YOLOv5的耦合头,这种解耦头结构在分类和定位任务上更加高效。 -
标签分配策略
YOLOv8优化了标签分配策略,使用动态标签分配策略(与YOLOv6的TOOD类似)。TOOD策略可以动态地根据目标框的质量分配正负样本,这在处理多尺度问题时,能够有效减少由于不合理标签分配导致的误差。YOLOv8不使用传统的候选框聚类方法,而是采用目标框和目标得分的动态匹配策略。 -
损失函数
YOLOv8使用了两个核心的损失函数来优化模型:- Varifocal Loss (VFL Loss):用于类别损失,这种损失函数能够根据预测类别的准确性调整正负样本的权重,降低低质量样本的影响,提高高质量正样本对损失的贡献。
- CIoU Loss 和 DFL Loss:这两个损失函数用于回归任务,CIoU(Complete Intersection over Union)用于捕捉边界框的几何相似度,DFL(Distance-Focal Loss)则进一步优化了回归的准确性。
- 动态蛇形卷积(Dynamic Snake Convolution)
动态蛇形卷积(DSC)是一种为解决管状结构(如血管、道路等)精确分割问题而提出的卷积操作。管状结构往往具有细长且曲折的局部特征,并且其全局形态可能会有所变化,这给精确分割带来了挑战。DSC的核心思想是通过动态调整卷积核形状,使其像蛇一样能够自适应地弯曲和扭动,从而贴合目标结构的特征。
- 特征提取阶段:通过引入动态蛇形卷积核,能够自适应捕捉管状结构的局部细节,如曲折、弯曲等形态。
- 特征融合阶段:为了进一步增强管状结构的识别能力,采用了多视角特征融合策略,从多个角度同时对目标进行关注,确保捕获不同全局形态下的特征。
- 损失约束阶段:为了保持分割结果的拓扑连续性,提出了基于持久同源性的损失函数。该约束确保分割结果在拓扑结构上保持连贯性,避免断裂或过度分离。
这种方法在2D和3D数据集上的实验中表现出了显著的优势,特别是在复杂的管状结构分割任务中,能够提供更高的准确性和连续性。
- DCNv2与YOLOv8的融合
DCN(Deformable Convolution)和其升级版DCNv2(Deformable Convolution v2)主要用于解决常规卷积无法处理的复杂目标几何变换问题。DCN通过引入可变的卷积核,能够适应目标的形变和几何变换,而不再局限于固定形状的卷积操作。
- DCNv1:解决了传统卷积在处理仿射变换时的局限性,如目标的旋转、缩放、透视变换等。
- DCNv2:相比DCNv1,DCNv2进一步提升了卷积核的灵活性,使其能够处理更加复杂的目标变换,并且在计算上进行了优化,提升了效率。
在YOLOv8中,DCNv2被集成到模型中,使得卷积层能够动态适应目标的几何形状变换。这对于处理像人、车辆等具有高度变化形态的物体,尤其是小物体检测,提升了模型的检测精度和泛化能力。
1. 数据结构与目标
该代码的目标是绘制每个类别(如类别B和类别M)在不同训练纪元(Epoch)下的mAP指标趋势。data
是一个包含了训练过程所有信息的DataFrame
,每一列代表训练过程中的某项度量,如训练损失、验证损失、学习率和各类别的mAP等。
2. 代码分析
# Correcting the mAP plotting function with the right column names
def plot_map_metrics(data, category, title):
plt.figure(figsize=(15, 6))
# Filtering columns for mAP
map_cols = [col for col in data.columns if col.startswith(f'metrics/mAP') and col.endswith(f'({category})')]
# Plotting the mAP metrics
for col in map_cols:
sns.lineplot(data=data, x='epoch', y=col.strip(), label=col.strip()) # Stripping whitespace from column names
plt.title(title)
plt.xlabel('Epoch')
plt.ylabel('mAP')
plt.legend()
plt.show()
# Replotting the mAP for categories B and M with corrected column names
plot_map_metrics(data, 'B', 'Mean Average Precision (mAP) for Category B Over Epochs')
plot_map_metrics(data, 'M', 'Mean Average Precision (mAP) for Category M Over Epochs')
3. 主要功能
-
**
plot_map_metrics
**函数的作用是:- 接收一个数据集(
data
)、一个类别(如B
或M
)和一个标题(title
)。 - 在
data
数据集中查找所有以metrics/mAP
开头并以指定类别(如B
或M
)结尾的列。 - 利用
seaborn
的lineplot
函数绘制出每个epoch
对应的mAP变化趋势。 - 最后显示图表,图表上有每个类别的
mAP
随epoch
变化的曲线。
- 接收一个数据集(
-
sns.lineplot
:用来绘制训练过程中的mAP变化曲线。通过x='epoch'
,横坐标是训练纪元数,y=col.strip()
,纵坐标是mAP值。
4. 如何使用这个函数
-
数据格式:假设
data
是一个包含训练过程详细信息的PandasDataFrame
,其中每列包括不同的度量指标,如损失函数、精度等。metrics/mAP(B)
和metrics/mAP(M)
是列名的一部分,用于表示不同类别(B和M)的mAP。 -
调用:
- 你调用
plot_map_metrics(data, 'B', 'Mean Average Precision (mAP) for Category B Over Epochs')
时,表示你要绘制类别B的mAP随训练纪元(Epoch)变化的趋势图。 - 同理,调用
plot_map_metrics(data, 'M', 'Mean Average Precision (mAP) for Category M Over Epochs')
时,会绘制类别M的mAP趋势图。
- 你调用
5. 如何改进或扩展
- 多个指标一起展示:如果你想把训练过程中的其他指标(如训练损失、验证损失)一起展示,可以在图表中添加额外的线条来表示这些指标。
- 可视化其他类别:假如你的数据集有更多类别,可以通过循环遍历类别,批量绘制每个类别的mAP变化趋势。
- 结合精度与召回率:除了mAP,还可以绘制**精度(Precision)和召回率(Recall)**随
epoch
变化的图表,帮助全面了解模型的表现。
-
源码获取
文章下方名片联系我即可~
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻
精彩专栏推荐订阅:在下方专栏👇🏻