A2A 协议的技术架构与实现
学习目标
-
技术架构掌握
- 深入理解 A2A 协议的分层架构设计
- 掌握各层次的功能和职责
- 理解协议的工作原理和数据流
-
实现能力培养
- 能够搭建基本的 A2A 服务端
- 掌握客户端开发方法
- 实现智能体间的有效通信
-
架构设计理解
- 理解与 MCP 的本质区别
- 掌握多智能体协作模式
- 学习分布式系统设计
一、A2A 的技术架构
1. 通信架构概述
A2A 协议采用现代化的三层架构设计:
- HTTP/HTTPS 层:基础通信层
- JSON-RPC 层:远程调用层
- 核心服务层:业务功能层
2. 各层详细说明
2.1 HTTP/HTTPS 层实现
class A2AAgent:
def __init__(self, agent_id: str):
self.agent_id = agent_id
self.capabilities = set()
self.comm = AgentCommunication()
async def handle_request(self, request: Request):
if not self.can_handle(request):
other_agent = await self.discover_capable_agent(request)
return await self.delegate_request(other_agent, request)
return await self.process_request(request)
2.2 JSON-RPC 层实现
class MessageRouter:
def __init__(self):
self.routes = {}
async def route_message(self, message: Message):
if message.target in self.routes:
handler = self.routes[message.target]
await handler(message)
2.3 核心服务层实现
class ServiceRegistry:
def __init__(self):
self.services = {}
def register(self, service_id: str, capabilities: List[str]):
self.services[service_id] = {
"capabilities": capabilities,
"status": "active",
"registered_at": datetime.now()
}
二、A2A 任务生命周期
1. 任务流程
-
任务创建
- 生成唯一标识
- 设定任务参数
- 确定执行要求
-
状态更新
- 任务分配状态
- 执行进度更新
- 异常状态处理
-
结果返回
- 数据格式化
- 结果验证
- 回调处理
2. 实现示例
class TaskLifecycle:
def __init__(self):
self.task_store = {}
async def create_task(self, spec: Dict) -> str:
task_id = str(uuid4())
self.task_store[task_id] = {
"spec": spec,
"status": "created",
"created_at": datetime.now()
}
return task_id
async def update_status(self, task_id: str, status: str):
if task_id in self.task_store:
self.task_store[task_id]["status"] = status
self.task_store[task_id]["updated_at"] = datetime.now()
async def complete_task(self, task_id: str, result: Any):
if task_id in self.task_store:
self.task_store[task_id].update({
"status": "completed",
"result": result,
"completed_at": datetime.now()
})
三、与 MCP 的架构差异
1. 核心设计理念对比
特性 | MCP | A2A |
---|---|---|
架构重点 | 单体智能体增强 | 多智能体协作 |
上下文管理 | 完整上下文传递 | 任务相关上下文 |
通信模式 | 工具调用 | 对等通信 |
扩展方式 | 垂直扩展 | 水平扩展 |
架构差异说明:
MCP:单体智能体通过工具调用扩展能力,垂直扩展方式
A2A:多智能体通过对等通信协作,水平扩展方式
2. 实现差异示例
MCP 实现
class MCPAgent:
def __init__(self):
self.tools = {}
self.context = Context()
def execute_tool(self, tool_name: str, params: Dict):
if tool_name in self.tools:
return self.tools[tool_name].execute(params, self.context)
A2A 实现
class A2AAgent:
def __init__(self, agent_id: str):
self.agent_id = agent_id
self.capabilities = set()
self.peers = {}
async def collaborate(self, task: Task):
if task.requires_capability not in self.capabilities:
peer = self.find_capable_peer(task.requires_capability)
return await peer.handle_task(task)
return await self.process_task(task)
MCP v A2A 架构结合
结合架构说明:
MCP 层:保持单体智能体的工具调用和上下文管理能力
A2A 层:提供智能体间的通信和协作能力
优势互补:
MCP 提供强大的单体能力
A2A 实现多智能体协作
支持复杂任务的分解与协同处理
四、最佳实践
1. 服务端开发
- 实现完整的生命周期管理
- 添加健康检查机制
- 实现服务发现功能
- 支持水平扩展部署
- 提供监控和告警
2. 客户端开发
- 实现优雅的错误处理
- 支持自动重试机制
- 提供连接池管理
- 实现负载均衡
- 支持熔断和降级
3. 安全性考虑
- 实现 TLS 加密
- 添加认证机制
- 实现访问控制
- 防止 DDOS 攻击
- 日志审计功能