- 博客(1558)
- 资源 (25)
- 收藏
- 关注

原创 《YOLO11魔术师专栏》专栏介绍 & 专栏目录
【原创自研模块】【多组合点优化】【注意力机制】【主干篇】【neck优化】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化】【小目标性能提升】【前沿论文分享】【训练实战篇】
2024-10-12 13:19:28
8587
32

原创 《RT-DETR魔术师》专栏介绍 & CSDN独家改进创新实战 & 专栏目录
通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、neck、loss等)进行魔改,实现创新!!!
2023-11-14 20:54:20
5792
24

原创 《YOLOv8-Pose关键点检测》专栏介绍 & CSDN独家改进创新实战 & 专栏目录
YOLOv8-Pose关键点检测:1)手把手从数据集标注、训练到模型的教程;2)模型轻量化创新;3)loss优化教程
2023-11-02 09:19:27
6575
18

原创 《深度学习工业缺陷检测》专栏介绍 & CSDN独家改进实战
深度学习工业缺陷检测:1)提供工业小缺陷检测性能提升方案,满足部署条件;2)针对缺陷样品少等难点,引入无监督检测;3)深度学习 C++、C#部署方案;4)实战工业缺陷检测项目,学习如何选择合适的框架和模型;
2023-09-22 21:05:56
5685
25
原创 YOLOv13改进:卷积魔改创新 | AAAI 2025 | 一种新颖的风车形卷积(PConv)符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野
如何使用:1)结合C3k2二次创新使用;2)直接作为卷积使用;
2025-08-04 08:56:51
137
原创 YOLOv13改进:Transformer优化 |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力 |AAAI2025
如何使用:1)结合C3k2二次创新使用;
2025-08-04 08:49:59
20
原创 YOLOv13改进:特征融合原创创新 | 一种具有切片操作的SimAM注意力的内容引导注意力(CGA)的混合融合方案
全新原创升级 :一种基于内容引导注意力(CGA)的混合融合,实现暴力涨点 | IEEE TIP 2024 浙大
2025-08-02 15:07:36
212
原创 YOLOv13如何提升NEU-DET的检测精度 | 新一代高效可形变卷积DCNv4高效结合SPPF创新涨点
在NEU-DET任务中YOLOv13原始mAP50为0.742;DCNv4高效结合SPPF创新mAP50提升至0.748
2025-07-30 16:05:05
1403
原创 Yolov8-pose关键点检测:Transformer创新 | 卷积化自注意力,共享大卷积核和动态卷积核,引入YOLOv12 Flash Attention思想高效涨点| ICCV2025
如何与YOLOv8-pose结合:C2f与ESCBlock创新性结合
2025-07-30 13:38:18
85
原创 YOLOv13改进:轻量化注意力 | 单头注意力模块,并行结合全局和局部信息提高准确度| SHViT CVPR2024
如何使用:1)结合A2C2f二次创新使用
2025-07-30 10:40:01
118
原创 YOLOv13改进:检测头创新 | DCNv4二次创新11Detetct,效果秒杀DCNv3、DCNv2等 ,助力检测
DCNv4更快收敛、更高速度、更高性能,完美和YOLOv13结合,助力涨点
2025-07-30 10:33:09
202
原创 YOLOv13改进:SPPF原创自研 | SPPF_attention,重新设计加入注意力机制,能够在不同尺度上更好的、更多的关注注意力特征信息
如何跟YOLOv13结合:1)首先加入 SPPF,并与SPPF_attention涨点结合
2025-07-29 13:10:47
159
原创 YOLOv13改进:SPPF优化 | 新一代高效可形变卷积DCNv4如何做二次创新?高效结合SPPF
如何跟YOLOv13结合:1)加入 SPPF并与DCNv4涨点结合
2025-07-29 13:06:04
131
原创 YOLOv13改进:检测头创新 | SEAM二次创新11Detetct,提升小目标遮挡物性能提升
本文尝试解决待测目标相互遮挡带来的检测困难,引入 SEAM 的注意力模块增强被遮挡物体或者难检测小目标物体的检测能力。
2025-07-28 09:55:06
154
原创 YOLOv13改进:自研检测头 | 独家创新(Partial_C_v13Detect)检测头结构创新,实现涨点
对现有13Detect进行二次创新,提升检测精度,独家创新(Partial_C_13Detect)检测头结构创新,适合科研创新度十足,强烈推荐
2025-07-28 09:54:50
148
原创 YOLOv13改进:原创自研 | 自研独家创新BSAM注意力 ,基于CBAM升级
提出新颖的注意力BSAM(BiLevel Spatial Attention Module),创新度极佳,适合科研创新,效果秒杀CBAM,Channel Attention+Spartial Attention升级为新颖的 BiLevel Attention+Spartial Attention
2025-07-25 13:26:38
231
原创 YOLOv13改进:原创自研 | 自研独家创新MSAM注意力,通道注意力升级,魔改CBAM
MSAM(CBAM升级版):通道注意力具备多尺度性能,多分支深度卷积更好的提取多尺度特征,最后高效结合空间注意力
2025-07-25 13:25:45
141
原创 YOLOv13改进:多尺度提取能力 | 大内核和倒瓶颈设计CMUNeXt,高效提取全局上下文信息助力检测
如何使用:1)替换YOLOv13 C3k2,实现二次创新,具备多尺度能力;2)直接使用CMUNeXtBlock高效涨点;
2025-07-24 15:54:58
52
原创 YOLOv13改进:注意力魔改 | 多尺度提取能力| 多尺度空洞注意力(MSDA),有效捕捉多尺度信息 | 中科院一区顶刊
多尺度空洞注意力(MSDA)采用多头的设计,在不同的头部使用不同的空洞率执行滑动窗口膨胀注意力(SWDA),创新力度十足
2025-07-24 08:42:40
148
原创 YOLOv13改进:block优化 | 简单高效的模块-现代反向残差移动模块 (iRMB) | ICCV2023 EMO
如何使用:和C3k2和iRMB结合,二次创新
2025-07-24 08:38:39
116
原创 基于YOLO11的轴承缺陷检测系统(Python源码+数据集+训练结果可视化)
基于YOLO11的轴承缺陷检测系统,阐述了整个数据制作和训练可视化过程
2025-07-23 21:09:20
1011
原创 YOLOv13改进:多尺度提取能力 | 全局到局部可控感受野模块GL-CRM ,量身为为多尺度变化而设计
如何使用:替换YOLOv13的 A2c2f,实现二次创新,具备多尺度能力
2025-07-23 15:51:33
125
原创 YOLOv13改进:数据增强 | 自动生成图片以及xml文件,开箱即用
针对小样本数据集如何有效的数据增强,以及如何自动生成对应的xml文件,本文提供了多种数据增强方式
2025-07-23 12:56:18
124
原创 YOLOv13-seg分割如何训练自己的数据集(道路分割缺陷)
YOLOv13Mask mAP50 为 0.692 ,YOLO11 Mask mAP50 为 0.673
2025-07-23 08:37:13
865
原创 InterpIoU:边界框回归的新损失函数——基于插值 IoU 的优化新思路,YOLO小目标涨点福音 | 2025.7月最新发表
提出 InterpIoU——一种全新的损失函数,用“插值框与目标框之间的 IoU”替代手工几何惩罚。
2025-07-23 08:35:59
925
原创 YOLOv10首发优化:Transformer创新 | 卷积化自注意力,共享大卷积核和动态卷积核,引入Flash Attention高效涨点| ICCV2025
如何与YOLOv10结合:C2f与ESCBlock创新性结合
2025-07-22 10:36:19
48
原创 YOLOv12首发优化:Transformer创新 | 卷积化自注意力,共享大卷积核和动态卷积核,引入Flash Attention高效涨点| ICCV2025
如何与YOLOv12结合:①A2C2f与ESCBlock创新性结合;②C3k2与ESCBlock创新性结合
2025-07-22 10:28:48
96
原创 YOLO11首发优化:Transformer创新 | 卷积化自注意力,共享大卷积核和动态卷积核,引入Flash Attention高效涨点| ICCV2025
如何与YOLO11结合:C3k2与ESCBlock创新性结合
2025-07-22 10:16:43
458
原创 YOLOv8首发优化:Transformer创新 | 卷积化自注意力,共享大卷积核和动态卷积核,引入Flash Attention高效涨点| ICCV2025
如何与YOLOv8结合:C2f与ESCBlock创新性结合
2025-07-22 10:16:38
84
原创 YOLOv13-pose关键点检测:训练实战手把手教程篇| 自己数据集从labelme标注到生成yolo格式的关键点数据以及训练教程
Pose mAP50 为0.893,相较于YOLO11的Pose mAP50 为 0.871 ,大幅提升
2025-07-22 08:37:44
850
原创 YOLOv13-pose关键点检测:训练实战篇 | 自己数据集从labelme标注到生成yolo格式的关键点数据以及训练教程
Pose mAP50 为0.893,相较于YOLO11的Pose mAP50 为 0.871 ,大幅提升
2025-07-22 08:36:55
94
原创 YOLOv13改进:注意力独家魔改 | 具有切片操作的SimAM注意力,魔改SimAM助力小目标检测
如何创新到YOLOv13:1)直接作为注意力使用,效果秒杀SimAM;2)高效和卷积结合,代替原始网络的卷积操作;
2025-07-21 15:23:14
54
windows下成功编译dcnv4环境
2024-06-18
基于YOLOv8的足球赛环境下足球目标检测系统
2024-06-18
基于YOLOV8的注意力机制源代码获取,开箱即用
2023-08-19
铝片缺陷数据集,数据集大小1400张,缺陷类型一共四种:zhen-kong、ca-shang、 zang-wu、 zhe-zho
2023-06-09
红外小目标飞机检测数据集
2023-05-07
基于yolov5的二维码识别
2023-04-30
基于分割的工业划痕质检数据集
2023-04-30
yolov1、yolov2、yolov3、yolov4、yolov5、yolov6、yolov7等论文
2023-04-28
三星油污缺陷类别:头发丝和小黑点, 数据集大小:660张
2023-04-28
玻璃瓶缺陷检测,缺陷类型:cap,数据集数量:125张
2023-04-28
二维码数据集,数据集大小1085张
2023-04-28
pyqt+yolov5+pcb缺陷检测
2023-04-01
yolov5 tensorrt c++部署
2023-03-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人