自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(124)
  • 资源 (2)
  • 收藏
  • 关注

原创 Hot100题解

2.移动零✅。

2025-07-23 11:06:00 239

原创 常见算法题题解(面经高频)

没事复习用。

2025-07-23 11:05:26 782

原创 【Golang学习】2-完善前端、GORM

本期分支work2上一篇是基于mysql的crud,这期进行小改进,给它一个前端+gormgorm是什么?是 Go 语言中一个非常流行的(对象关系映射),简化对数据库的操作。它支持主流数据库(如 MySQL、PostgreSQL、SQLite、SQL Server 等),可以让我们用,减少手动写 SQL 的工作。需要先安装好库才能用,跟python似的连接数据库配置-config.go小改,使用了GORM的连接方式。

2025-06-25 10:31:48 289

原创 【LLM学习】2-简短学习BERT、GPT主流大模型

阅读《Attention is All You Need》论文,理解自注意力机制和多头注意力。学习BERT、GPT等主流LLM的预训练和微调流程。

2025-06-23 11:33:05 604

原创 【Golang学习】1-基于mysql增删改查

golang语言复习,学习一些重点和组件。通过这个简单的demo,来复习/学习golang代码。

2025-06-20 17:55:00 320

原创 【LLM学习】论文学习-Qlora: QLoRA: Efficient Finetuning of Quantized LLMs

本文介绍了一种名为QLoRA的创新方法,用于有效微调LLMs(文中Guanaco模型)。这种方法通过减少微调模型所需的内存量,使得原本需要超过780GB GPU内存的6.5B参数模型微调,现在可以在小于48GB的GPU内存下完成,同时保持与16位全参数微调的性能相当。这项技术使得目前最大的公开可用模型能够在单个GPU上微调,显著提高了LLM微调的可行性。so,重点是减少微调模型所需内存的使用——>保持性能的同时,提高了LLM微调的可能性。一种理论上最适合正态分布数据的量化的新的数据类型。

2025-03-21 20:29:42 1090

原创 【LLM学习】1-NLP回顾+Pytorch复习

随着大模型爆火,准备好好深入学习下,根据招聘岗位,总结了下大模型人才需要具备以下能力:深度学习与大模型开发:熟练掌握 PyTorch,了解 TensorFlow,熟悉 Transformer、BERT、GPT 等模型及其微调算法(如 LoRA)。大模型微调与优化:掌握微调方法(Supervised/PEFT)、指令微调、模型对齐、推理性能加速(vLLM、LmDeploy、Ollama 等)。

2025-03-08 20:05:10 753

原创 [LeetCode力扣hot100]-堆

典型的Top K问题,(第一遍做是快排+输出,有点太取巧了肯定不行,时间复杂度也不符合O(n))遍历插入时,插入的数据和堆顶(即根节点)对比即可。此题可用小顶堆,小顶堆的特点是父节点<子节点,所以最后。最后的根节点就是整个数组的第K大的元素。

2025-03-07 15:30:12 336

原创 [LeetCode力扣hot100]-快速选择和快排

腾讯面经高频真题,这题看上去不难,但是难点是复杂度规定为O(n)如果用sort的话 就是O(nlogn)2.统计字符串含有大写字母A的个数。,但是只能收敛于O(n)。想要得到O(n),就要用。能做出来不太合规就是。

2025-02-23 21:53:31 424

原创 [LeetCode力扣hot100]-链表

指针pA遍历完后从headA跳转到headB,pB遍历完headB跳成A。同理不相交的话会遍历a+b,最后会pA=pB=NULL,最后返回空。这样的话最后遍历a+b+c,肯定会最后同时到达相交节点的。思路就是遍历两个链表,有相同的部分就可以视为相交。但是长度不一样,比如两个会相交的链表,

2025-02-18 23:50:21 302

原创 [LeetCode力扣hot100]-C++常用数据结构

一个节点指向三个东西,root->val,root->left, root->right。树是一种特殊的数据结构,力扣二叉树相关会直接让你用。题解中上面也有对应的注释。ans.count()//检查某个元素是否在set里,1在0不在。//根据类型定义,像vector。ans.erase()//删除某个指定元素。5.散列表unordered_map。

2025-02-18 00:03:14 353

原创 [LeetCode力扣hot100]-二叉树相关手撕题

就说左子树-根-右子树顺序,之前也有二叉树相关的文章,基本上递归为主,这里用栈等方式实现下。注意上面给出节点的基本结构,如左右,val指等即可,

2025-02-18 00:02:03 388

原创 动态规划高频题

会与面经题有一个重复的,比如最大股票收益,因为是动归系列,放在一起总结。

2024-09-25 21:40:09 259 1

原创 百度-日常实习-部分手撕代码题【1】

就需要把stack1的(底-顶)1 2 3 4先放到stack2中,注意 放完后的顺序是(底-顶)4 3 2 1,正好倒了各个,接下来直接pop2就相当于完成了队列的功能(从顶部删除)。百度:8.算法:给出字符串数组,例如abcd,abc,efg,ef,分为两类,abc类和ef类,类似操作实现输出分类数量(没太理解面试官意思,和我说ab和ba也是同一类的,没a出来)(我也没理解。不会的原因是不熟悉链表的语法,大概思路还是有的,循环遍历存储,有重复的就说明有环,可以借助set数据结构。麻了,之后再练习吧。

2024-09-20 18:23:12 742

原创 字节飞书-日常实习-部分手撕代码题

之前的文章提到了一道高频题:最长不重复的字串,用到动态窗口。解法就在之前的文章。这篇文章从牛客上找了一些手撕题,在这里记录分享一下。

2024-09-17 16:44:51 1039

原创 [LeetCode力扣hot100]-滑动窗口-例:无重复字符的最长子串

如上图,核心思想就是满足条件的话,让黑色指针右移动;当黑色指针无法移动时,白色指针移动,白指针移动后如果黑色能移动就移动黑色。(0914学习了滑动窗口概念和set用法后才做出来了,需要再练),注意其中的set用法。同类题,只不过字符串换成了数组,上面一道能做出来这道题也能做出来。同时,为了满足这种关系,需要用到set数据结构(不可有重复元素)ans.count()//检查某个元素是否在set里,1在0不在。题目链接在开头,做为测开面试常见手撕题,必须要会做。字节飞书面经里的高频题,没做出来,需要好好复习。

2024-09-15 15:51:03 408

原创 【中等】保研/考研408机试-二分查找(模板题)

二分查找就是在一个有序数组中查找某个值,以首端尾端的中点mid查找对比,mid与要查找的数进行对比,看落在哪个区间,在那个区间重新得到首端和尾端,进而得到新的mid值。

2024-09-07 20:25:16 217

原创 【入门】面试408机试-排序(冒泡排序、快排)

目标软件测试日常实习岗,搜了搜面经,机试题不会太难,但也不太简单,故记录一下。

2024-09-01 21:13:10 803

原创 【中等】保研/考研408机试-动态规划1(01背包、完全背包、多重背包)

多重背包模板dp[j]=max(dp[j-v[i]]+w[i],dp[j]) //核心思路代码(一维数组版)dp[i][j]=max(dp[i-1][j], dp[i-1][j-v[i]]+w[i])//二维数字版。

2024-05-06 21:27:08 717

原创 【入门】保研/考研408机试-基本知识点(输入/出、基本数学、字符串)

练习笔记记录基于和每篇会贴上几个机试原题和我找到题(leetcode、洛谷等)及我的解题思路。(立个flag至少一周一更)这些是比较基础容易忘的,适合小白入手 ,设数组外面去。

2024-03-16 18:39:32 1376

原创 【中等】保研/考研408机试-二叉树相关

二叉树的前序、中序、后序遍历的定义: 前序遍历:对任一子树,先访问根,然后遍历其左子树,最后遍历其右子树;中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树;后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。二叉树中的结点名称以大写字母表示:A,B,C....最多26个结点。可能有多组测试数据,对于每组数据, 输出将输入字符串建立二叉树后中序遍历的序列,每个字符后面都有一个空格。输入样例可能有多组,对于每组测试样例, 输出一行,为后序遍历的字符串。,长度不超过100。

2024-03-15 17:13:54 1329

原创 如何将图片(matlab、python)无损放入word论文

许多论文对插图有要求,直接插入png、jpg一般是不行的,这是一篇顶刊文章(pdf)的插图,放大2400%后依旧清晰,搜罗了网上的方法,总结了一下如何将图片无损放入论文中。这里主要讨论的是数据生成的图表,像非图表的插图可以参考下面的链接用visio处理后。关于word的使用,office和wps我感觉功能都差不多,看个人喜好选择,以下主要以wps演示。

2023-12-22 10:54:46 3942

原创 Vscode配置C#编程环境(win10)

在搜索框中搜索并安装C#、C# Extensions、C/C++三个插件即可。至此,准备工作完毕,可以进行代码的运行和调试,样例代码便为刚才运行时生成的。如果缺少.bin或.bin文件夹内容不全,在终端中输入。官网如下,下载完成后双击打开一路走到底就行。,bin文件夹中即有出现一些正确的文件。创建或打开一个文件夹后要调出终端。可以点击左上角,点击工具栏中。进入命令行窗口,窗口中输入。软件显示安装好后,电脑按。

2023-10-06 18:27:00 6502 1

原创 如何导出论文高清图片

将论文拖进ps,点击图像,选择想找的图片。可以选择jpg格式,100%品质导出。打开ps(我是ps2021)左上角文件-导出-导出为。

2023-09-20 18:00:00 1311

原创 第G2周:人脸图像生成(DCGAN)

所以在整个训练过程中,生成网络G的目标是生成可以以假乱真的图像G(z),当判别网络D无法区分,即D(G(z))=0.5时,便得到了一个生成网络G用来生成图像扩充数据集。如图2所示,DCGAN 模型主要包括了一个生成网络 G 和一个判别网络 D,生成网络 G 负责生成图像,它接受一个随机的噪声z,通过该噪声生成图像,将生成的图像记为G(z),判别网络D负责判别一张图像是否为真实的,它的输入是x,代表一张图像,输出D(x)表示x为真实图像的概率。]内部限免文章(版权归 *K同学啊* 所有)

2023-08-14 16:47:22 527

原创 第G1周:生成对抗网络(GAN)入门

生成器和判别器交替运行,相互博弈,各自的能力都得到升。首先第一代生成模型1G的输入是随机噪声z,然后生成模型会生成一张初级照片,训练一代判别模型1D另其进行二分类操作,将生成的图片判别为0,而真实图片判别为1;为了欺瞒一代鉴别器,于是一代生成模型开始优化,然后它进阶成了二代,当它生成的数据成功欺瞒1D时,鉴别模型也会优化更新,进而升级为2D,按照同样的过程也会不断更新出N代的G和D。生成器的本质是一个使用生成式方法的模型,它对数据的分布假设和分布参数进行学习,然后根据学习到的模型重新采样出新的样本。

2023-08-14 09:15:36 2072

原创 NLP实战9:Transformer实战-单词预测

cuda# 定义编码器层# 定义编码器,pytorch将Transformer编码器进行了打包,这里直接调用即可# 初始化权重"""Arguments:src : Tensor, 形状为 [seq_len, batch_size]src_mask: Tensor, 形状为 [seq_len, seq_len]Returns:输出的 Tensor, 形状为 [seq_len, batch_size, ntoken]"""# 生成位置编码的位置张量# 计算位置编码的除数项。

2023-08-01 10:50:54 5000 1

原创 图解 Transformer笔记

[Transformer整体结构图,与seq2seq模型类似,Transformer模型结构中的左半部分为编码器(encoder),右半部分为解码器(decoder),接下来拆解Transformer。

2023-07-23 14:35:00 968

原创 NLP实战7:seq2seq翻译实战-Pytorch复现

🍨 本文为[🔗]内部限免文章(版权归 *K同学啊* 所有)🍖 作者:[📌 本周任务:●请根据N5、N6周内容,为解码器添加上注意力机制。

2023-07-10 16:08:04 659

原创 NLP实战6:seq2seq翻译实战-Pytorch复现-小白版

🍨 本文为[🔗]内部限免文章(版权归 *K同学啊* 所有)🍖 作者:[📌 本周任务:●结合训练中N5周的内容理解本文代码数据集:eng-fra.txt。

2023-07-05 18:49:38 1459

原创 NLP学习:seq2seq详解

总结起来,这篇文章介绍了seq2seq模型的原理和应用。seq2seq模型是一种常见的NLP模型结构,用于处理序列到序列的任务,如机器翻译和文本摘要。它由编码器和解码器组成,其中编码器将输入序列转化为一个上下文向量,解码器根据上下文向量生成输出序列。基于RNN的seq2seq模型使用循环神经网络来处理输入序列和输出序列,其中每个时间步的输入和输出都通过RNN进行处理。然而,这种模型在处理长文本序列时存在困难,因为RNN很难捕捉到长距离的依赖关系。为了解决这个问题,引入了注意力机制。

2023-06-27 13:13:21 968

原创 NLP实战:使用Word2vec实现文本分类

model.train() # 切换为训练模式optimizer.zero_grad() # grad属性归零loss = criterion(predicted_label, label) # 计算网络输出和真实值之间的差距,label为真实值loss.backward() # 反向传播torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) # 梯度裁剪optimizer.step() # 每一步自动更新# 记录acc与loss。

2023-06-17 20:35:59 5334 4

原创 NLP实战:调用Gensim库训练Word2Vec模型

🍨 本文为[🔗]内部限免文章(版权归 *K同学啊* 所有)🍖 作者:[📌 本周任务:●阅读NLP基础知识里Word2vec详解一文,了解并学习Word2vec相关知识●学习本文内容,在下一篇文章中,将使用Word2vec辅助完成文本分类任务是一本电子书,txt格式。

2023-06-06 14:42:09 1423

原创 NLP实战:中文文本分类-Pytorch实现

model.train() # 切换为训练模式optimizer.zero_grad() # grad属性归零loss = criterion(predicted_label, label) # 计算网络输出和真实值之间的差距,label为真实值loss.backward() # 反向传播torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) # 梯度裁剪optimizer.step() # 每一步自动更新# 记录acc与loss。

2023-05-31 09:45:14 8382 50

原创 快速生成一份ppt:ChatGPT+MindShow

帮我做一份《xxxx》的ppt,帮我写一份包含6个子标题的大纲,每个子标题下尽量写4-5条内容,内容尽量详实,如果有例子更好。最后用markdown代码框输出。需要用到目前全宇宙最火的chatgpt,输入格式一定要。点击上方-我的文档,左侧选择。接下来进入MindShow。用markdown格式创建。

2023-05-27 18:17:08 687 2

原创 IDEA中怎么把jar包导入项目中

大作业让生成一个pdf,查找资料发现可以通过pdfbo相关函数调用,但本地缺少这个文件,以这个文件为例子。

2023-05-19 21:23:31 2381

原创 深度学习第J9周:Inception v3算法实战与解析

总结来说,Inception v3是一种深度卷积神经网络,其主要特点包括更深的网络结构、使用Factorized Convolutions、添加Batch Normalization、引入辅助分类器以及使用基于RMSProp的优化器进行训练。相对于Inception v1的Inception Module结构,Inception v3在卷积操作上做出了改动,使用两个3x3的卷积代替一个5x5的卷积以提高计算速度,并将n x n的卷积核尺寸分解为1 x n和n x 1两个卷积。

2023-05-14 20:53:52 5774 3

原创 YOLOv5教程-如何使用他人的数据集进行训练+测试评估模型

上面这篇文章是教大家从无到有如何diy一个权重模型用于目标检测,对水项目的本科生而言(比如我),大头时间都花在找数据集和标注数据集上了。许多朋友问过我数据集在哪找,这篇教程是我的想法,但许多也都是图片集,缺少标注文件。但有一些比赛和开源项目会提供图片+标注数据集供参赛选手,比如这个小比赛提供了现成的数据集,附上说明图片最后教大家调用val.py进行测试并得到相关数据。

2023-05-08 14:04:41 9966 11

原创 NLP实战:基于Pytorch的文本分类入门实战

这里我们定义TextClassificationModel模型,首先对文本进行嵌入,然后对句子嵌入之后的结果进行均值聚合。self.embedding = nn.EmbeddingBag(vocab_size, # 词典大小embed_dim, # 嵌入的维度这段代码是在 PyTorch 框架下用于初始化神经网络的词嵌入层(embedding layer)权重的一种方法。这里使用了均匀分布的随机值来初始化权重,具体来说,其作用如下:1。

2023-05-04 13:03:33 3788 3

原创 NLP实战:快递单信息抽取-基于ERNIE1.0 预训练模型

推荐使用MapDataset()自定义数据集。每条数据包含一句文本和这个文本中每个汉字以及数字对应的label标签。之后,还需要对输入句子进行数据处理,如切词,映射词表id等。ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的知识,实现模型效果不断进化。

2023-05-03 19:26:21 2736 2

深度学习NLP部分代码

深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习NLP部分代码深度学习N

2023-08-02

深度学习每周练习P部分源代码

深度学习每周练习P部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习P部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习P部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习P部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习P部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习P部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习P部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习P部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习P部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习P部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习P部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习P部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习P部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习P部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习P部

2023-06-23

深度学习每周练习J部分源代码

深度学习每周练习J部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习J部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习J部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习J部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习J部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习J部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习J部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习J部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习J部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习J部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习J部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习J部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习J部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习J部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习J部

2023-06-23

深度学习每周练习R部分源代码

深度学习每周练习R部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习R部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习R部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习R部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习R部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习R部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习R部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习R部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习R部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习R部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习R部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习R部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习R部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习R部分源代码,由于大小限制删了一些,具体可以看原文章。深度学习每周练习R部

2023-06-23

天气识别数据集目标检测

天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识别数据集天气识

2023-05-06

咖啡豆识别数据集目标检测

咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集咖啡豆识别数据集

2023-05-06

jdk11,安装Jenkins配套用

jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkins配套用jdk11,安装Jenkin

2023-05-02

心脏故障分析数据集表格

心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分析数据集表格心脏故障分

2023-04-15

河北工业大学离散数学实验

河北工业大学离散数学实验,内含1-6,实验报告+源码,仅供参考

2023-02-02

软著申请样例,自动排版代码行数统计软件

软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。软著申请样例,自动排版代码行数统计软件。

2022-12-03

软著申请样例,内有五种文件,源程序前30页、后30页、申请人信息表(学校用)、软著申请表、软件说明书

软著申请样例,内有五种文件,源程序前30页、后30页、申请人信息表(学校用)、软著申请表、软件说明书。软著申请样例,内有五种文件,源程序前30页、后30页、申请人信息表(学校用)、软著申请表、软件说明书。软著申请样例,内有五种文件,源程序前30页、后30页、申请人信息表(学校用)、软著申请表、软件说明书。软著申请样例,内有五种文件,源程序前30页、后30页、申请人信息表(学校用)、软著申请表、软件说明书。软著申请样例,内有五种文件,源程序前30页、后30页、申请人信息表(学校用)、软著申请表、软件说明书。软著申请样例,内有五种文件,源程序前30页、后30页、申请人信息表(学校用)、软著申请表、软件说明书。软著申请样例,内有五种文件,源程序前30页、后30页、申请人信息表(学校用)、软著申请表、软件说明书。软著申请样例,内有五种文件,源程序前30页、后30页、申请人信息表(学校用)、软著申请表、软件说明书。软著申请样例,内有五种文件,源程序前30页、后30页、申请人信息表(学校用)、软著申请表、软件说明书。

2022-12-02

jstl.jar和standard.jar的包5分下载

只要5积分,省去您宝贵的时间

2022-09-30

opencv训练分类器可能需要的文件

免费

2022-10-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除