python数据分析(juypter)

  • 数据合并

    • pd.concat([df1,df2])

      • index 两个df 有相同的行索引, 可以拼接起来, 左右拼接, axis = 1

      • column 两个df 有相同的列名, 可以拼接起来, 上下拼接 默认的

    • pd.merge /df.merge

      • 类似于SQL的join

      • 两个df 有取值相同的列, 可以通过merge 连接起来

      • how = left,right,inner outer

    • df.join()

      • 默认类似于 pd.concat([df1,df2],axis = 1)

      • df.join(df2,on='列名') df的一列和df2的index值相同可以拼接起来

  • 数据透视表, 作用和分组聚合一样, 只不过展示的方式有差异

  • 数据可视化

    • Matplotlib 基本套路

      • import matplotlib.pyplot as plt

      • plt.figure(figsize=()) fig,ax = plt.subplots(figsize=())

      • plt.plot()

      • plt.show()

    • 直方图 连续型变量, 单变量看分布

      • plt.hist(bins = ) 分成几组

    • 散点图 两个连续型变量, 看之间的关系

      • plt.scatter()

      • 气泡 就是散点, 只不过多了一个维度通过这个维度的数据控制点的大小

      • 蜂巢 hexbin 可以显示出不同区域数据点分布的多少

    • 柱状图 类别型变量,对比数量或者平均值 不同从业时间平均薪资比较

      • plt.bar()

    • 饼图 每个部分之间对比, 所有的部分相加构成一个完整的整体 年底公司 不同部门收入构成分析

      • plt.pie()

    • 箱线图

1 数据可视化—— seaborn

  • 需要画图的场景

    • 对外要做数据分析报告, 做文档, 为了直观的向听众、客户、同事说明

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值