一、绪论
一个电子设备的性能好坏唯一标准:能否有效提取我们想要的信息并做出相关控制
或者说:尽可能保留有用信号的能量,去除无用信号的能量。
信号分类(确知程度):
信号处理的目的:
- 去伪存真去除信号中冗余的和次要的成分,包括不仅没有任何意义反而会带来干扰的噪音。
- 特征抽取把信号变成易于进行分析和识别的形式
- 编码解码把信号变成易于传输、交换与存储的形式(编码),或从编码信号中恢复出原始信号(解码)
平滑,滤波和预测区别:
x(t)=s(t)+n(t)−−>滤波器−−>y(t)=s(t+α)x(t)=s(t)+n(t)-->滤波器-->y(t)=s(t+\alpha)x(t)=s(t)+n(t)−−>滤波器−−>y(t)=s(t+α)
α>0\alpha>0α>0滤波器超前时刻输出,滤波器完成作用是对输入信
号进行预测
α=0\alpha=0α=0滤波器就是输出同时刻的输入信号,滤波器完成作用是滤除噪声而保留有用信号:
α<0\alpha<0α<0滤波器滞后α\alphaα时刻输出,滤波器完成作用是对输入信
号进行平滑。
二、随机信号处理基础
一般来说,信号的频谱是分布在整个频率轴(−∞⩽w⩽∞)( - \infty \leqslant w \leqslant \infty )(−∞⩽w⩽∞)上的,尤其是持续时间有限的信号必定如此。
高频限带信号是指信号频谱主要局限于某一频率f±f0f \pm {f_0}f±f0附近
的信号,可表示为s(t)=as(t)cos[ω0t+φs(t)]s(t) = {a_s}(t)\cos [{\omega _0}t + {\varphi _s}(t)]s(t)=as(t)cos[ω0t+φs(t)]
as(t){a_s}(t)as(t)为限带信号的幅度调制波
φs(t){\varphi _s}(t)φs(t)为限带信号的相位调制波
在一般情况下,它们都是时间的函数。在信息传输中,就用这两部分来携带信息。
宽带信号:Δf⩾0.05f0\Delta f \geqslant 0.05{f_0}Δf⩾0.05f0
宽带信号系统抗干扰性能强,信息量大
超宽带信号:Δf⩾0.2f0\Delta f \geqslant 0.2{f_0}Δf⩾0.2f0
探底雷达,冲击雷达
零中频处理技术
两个正交视频信号,保留幅度和相位信息
希尔波特变换:
$\mathop s\limits^ \wedge (t) = \frac{1}{\pi }\int_{ - \infty }^\infty {\frac{{s(\tau)}}{{t - \tau }}} d\tau $
s(t)=−1π∫−∞∞s∧(τ)t−τdτs(t) = - \frac{1}{\pi }\int_{ - \infty }^\infty {\frac{{\mathop s\limits^ \wedge (\tau )}}{{t - \tau }}} d\taus(t)=−π1∫−∞∞t−τs∧(τ)dτ
希尔伯特变换为实函数s(t)s(t)s(t)与s∧(t)\mathop s\limits^ \wedge (t)s∧(t)之间的一种线性变换
希尔伯特正变换在整个正频率内相当于一个滞后90°的移相器
高斯分布:
p(x)=12πσe−(x−mX)22σ2p(x) = \frac{1}{{\sqrt {2\pi } \sigma }}{e^{ - \frac{{{{(x - {m_X})}^2}}}{{2{\sigma ^2}}}}}p(x)=2πσ1e−2σ2(x−mX)2
标准高斯分布:σ=1,mX=0\sigma = 1,{m_X} = 0σ=1,mX=0
二维概率密度函数
X和Y统计独立:当γ=0\gamma = 0γ=0时,有p2=p(x)p(y){p_2} = p(x)p(y)p2=p(x)p(y),此时联合的概率密度函数为单独两个一维正态概率密度之积,称二维随机变量X和Y是两个相互独立的随机变量。n维随机变量统计独立同理
方差的含义:反映了随机变量偏离均值的程度,随机变量偏离均值的误差总(平均)功率
D(X)=E(X2)−E2(X)D(X) = E({X^2}) - {E^2}(X)D(X)=E(X2)−E2(X),方差=平均功率-均值平方
k阶原点矩mkm_kmk,k阶中心距CkC_kCk
(i+j)阶混合矩mij{m_{ij}}mij,(i+j)阶混合中心矩Cij{C_{ij}}Cij
如果E(XY)=0E(XY)=0E(XY)=0,则称随机变量X和Y是正交的。
- 相关系数∣γ∣=1\left| \gamma \right| = 1∣γ∣=1时,说明随机变量X和Y之间呈线性关
系。或称X和Y依概率线性相关 - 当∣γ∣<1\left| \gamma \right| < 1∣γ∣<1时,说明X和Y以一定概率大小相关。
随机变量的变换
Y=g(X)−−>反函数X=h(Y)Y=g(X)-->反函数X=h(Y)Y=g(X)−−>反函数X=h(Y)
X落在(x+dx)很小区间内概率=Y落在(y+dy)很小区间内概率,即p(x)dx=p(y)dy−>p(y)=p(x)dxdy−>p(y)=∣dxdy∣p[h(y)]p(x)dx=p(y)dy->p(y) = \frac{{p(x)dx}}{{dy}}->p(y) = \left| {\frac{{dx}}{{dy}}} \right|p[h(y)]p(x)dx=p(y)dy−>p(y)=dyp(x)dx−>p(y)=dydxp[h(y)]
若是多值变换Y落在(y+dy)很小区间内概率=X落在很小区间(x1+dx1),(x2+dx2)(x_1+dx_1),(x_2+dx_2)(x1+dx1),(x2+dx2),…内概率和
推广:如果n维随机变量(X1,2,…,Xn)和(Y1,Y2,…,Yn)之间是单值变换关系,则多维随机变量的变换关系为
pn(y1,y2...yn)=pn(x1,x2...xn)∣∂(x1,x2...xn)∂(y1,y2...yn)∣{p_n}({y_1},{y_2}...{y_n}) = {p_n}({x_1},{x_2}...{x_n})\left| {\frac{{\partial ({x_1},{x_2}...{x_n})}}{{\partial ({y_1},{y_2}...{y_n})}}} \right|pn(y1,y2...yn)=pn(x1,x2...xn)∂(y1,y2...yn)∂(x1,x2...xn)
雅可比行列式:J=∂(x1,x2...xn)∂(y1,y2...yn)J = \frac{{\partial ({x_1},{x_2}...{x_n})}}{{\partial ({y_1},{y_2}...{y_n})}}J=∂(y1,y2...yn)∂(x1,x2...xn)
两个随机变量互相独立,其和的概率等于两个随机变量概率的卷积。
特征函数
${\Phi X}(\omega ) = E[{e^{j\omega X}}] = \int{ - \infty }^\infty {{e^{jwx}}p(x)dx} $
维纳辛钦定理:特征函数与概率密度函数构成一对傅立叶变换。
p(x)=12π∫−∞∞e−jwxΦ(w)dwp(x) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {{e^{ - jwx}}\Phi (w)} dwp(x)=2π1∫−∞∞e−jwxΦ(w)dw
性质:
- ∣ΦX(ω)∣⩽∣ΦX(0)∣=1\left| {{\Phi _X}(\omega )} \right| \leqslant \left| {{\Phi _X}(0)} \right| = 1∣ΦX(ω)∣⩽∣ΦX(0)∣=1总是存在
- 对于随机变量X,如果存在以下线性变换
Y=aX+b,a,b为常数,
则有ΦY(ω)=ΦX(aω)ejωb{\Phi _Y}(\omega ) = {\Phi _X}(a\omega ){e^{j\omega b}}ΦY(ω)=ΦX(aω)ejωb - 若随机变量X1,X2X_1,X_2X1,X2统计独立
均值中心极限定理:
不管什么分布,样本均值(样本数为N)服从正态分布,方差为原方差的1/N。