1、数据概况
数据十分简单,就只有日期,以及对应的销量。
2、代码
本次我使用jupyter notebook 来整,,主要是可以更方便的看出每组代码的输出结果。代码如下,
#导入相关库
import numpy
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
import pandas as pd
import os
from keras.models import Sequential, load_model
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.preprocessing import MinMaxScaler
然后进行数据导入和相关处理
dataframe = pd.read_csv(r"D:\桌面文件夹哦\数据统计\悠度数据\2特征.CSV", usecols=[1], engine='python', skipfooter=3)
dataset = dataframe.values
# 将整型变为float
dataset = dataset.astype('float32')
#归一化
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)