【GANs】Deep Convolution Generative Adversarial Network

本文深入探讨了DCGAN(深度卷积生成对抗网络),介绍其作为无监督学习工具,如何利用深度卷积神经网络进行生成和判别。DCGAN通过特殊网络结构提升了训练稳定性,例如使用带步长卷积、批量归一化和特定激活函数。文章重点讨论了网络的设计细节及其优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【GANs】Deep Convolution Generative Adversarial Network

3 DCGAN

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

3.1 简介


深度卷积神经网络(Deep Convolution Generative Adversarial Nets)的生成网络

在DCGAN中,

  • 判别网络是一个传统的深度卷积神经网络,但使用了带步长的卷积来实现下采样操作,不用 m a x p o o l i n g maxpooling maxpooling操作;
  • 生成网络使用了一个特殊的深度卷积网络来实现。如上图,使用微步卷积来生成 64 × 64 64×64 64×64大小的图像。第一层是全连接层,输入是从均匀分布中随机采样的100维向量 z z z,输出是 4 × 4 × 1024 4×4×1024 4×4×1024的向量,后面是四层微步卷积,没有汇聚层。

DCGAN的主要优点是通过一些经验性的网络结构设计使得对抗训练更加稳定。比如:

  • 使用带步长的卷积(在判别网络中)和微步卷积(在生成网络中)来代替汇聚操作,以免损失信息;
  • 使用批量归一化;
  • 去除卷积层之后的全连接层;
  • 在生成网络中,除了最后一层使用了 T a n h Tanh Tanh激活函数以外,其余层都使用 R e L U ReLU ReLU函数;
  • 在判别网络中,都是用 L e a k y R e L U LeakyReLU LeakyReLU函数。

3.2 DGGAN实现

# DCGAN_2016.py
import os
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Dense, LeakyReLU, BatchNormalization, Reshape, Input
from tensorflow.keras.layers import UpSampling2D, Conv2D, Activation, ZeroPadding2D, GlobalAveragePooling2D
from tensorflow.keras.datasets import mnist
from tensorflow.keras.optimizers import Adam


class DCGAN():
    def __init__(self):
        # 输入shape
        self.img_rows = 28
        self.img_cols = 28
        self.channels = 1
        self.img_shape = (self.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SupV

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值