Flink 从 kafka 中读取数据并输出到 kafka

本文详细介绍了如何使用ApacheFlink从Kafka读取并处理流式数据,然后将结果输出回Kafka。首先,添加了Flink的Kafka连接器Maven依赖。接着,展示了如何编写Flink程序,包括设置Kafka消费者和生产者的配置,以及使用DataStreamSource和FlinkKafkaConsumer进行数据读取,使用FlinkKafkaProducer进行数据输出。最后,启动Kafka集群并在不同节点上运行生产者和消费者进行测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Kafka 是一个分布式的基于发布/订阅的消息系统,本身处理的也是流式数据。kafka和flink二者被称为当前处理流式数据的双子星。

下面我们将从以下几个步骤展开讲解:

目录

一 添加maven依赖

二 编写flink程序

从kafka读取数据

输出数据到kakfka

三  启动kafka集群

四 运行flink程序


一、添加maven依赖

<!--kafka connector-->
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-kafka_2.12</artifactId>
    <version>1.13.1</version>
</dependency>

二、编写flink程序

老规矩,先上代码 再做介绍

代码如下:

package com.flink.wc.myflink.source;

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.util.Properties;

public class mysource_kafka_kafka {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        // 配置kafka集群信息  properties是java中的一个集合类, 多用于 配置参数, 它继承于 Hashtable,表示一个持久的属性集.属性列表中每个键及其对应值都是一个字符串。
        // 这里和在kafka javaAPI中配置kafka信息时一样
        Properties properties = new Properties();
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop-001:9092");
            // 配置序列化 
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
            // 配置消费者组
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test");
        
        // 从kafka中读取数据
        DataStreamSource<String> stream = env.addSource(new FlinkKafkaConsumer<String>("myflink_source", new SimpleStringSchema(), properties));

        stream.print("flink");

        // 将数据输出到kafka
        stream.addSink(new FlinkKafkaProducer<String>("myflink_sink", new SimpleStringSchema(), properties));
        
        env.execute();

    }
}

1、从kafka读取数据

通过addSource()方法传入一个SourceFunction的实现类

FlinkKafkaConsumer() 就是这个实现类 很好理解 就是实例化一个flink程序的kafka消费者

源代码中FlinkKafkaConsumer类 构造函数如下:三个参数分别是 (kafka主题, 反序列化对象, kafka集群配置信息)

public FlinkKafkaConsumer(String topic, DeserializationSchema<T> valueDeserializer, Properties props) {
    this(Collections.singletonList(topic), valueDeserializer, props);
}

2、输出数据到kakfka

通过addSink()方法传入一个SinkFunction的实现类

FlinkKafkaProducer () 就是这个实现类 也很好理解 就是实例化一个flink程序的kafka生产者

构造函数如下:三个参数分别是 (kafka主题, 序列化对象, kafka集群配置信息)

public FlinkKafkaProducer(String topicId, SerializationSchema<IN> serializationSchema, Properties producerConfig) {
    this(topicId, serializationSchema, producerConfig, Optional.of(new FlinkFixedPartitioner()));
}

三、启动kafka集群

// 启动zookeeper
// 启动kafka
(base) [hadoop@hadoop-001 ~]$ jps
1410 QuorumPeerMain
6583 NameNode
8121 Jps
8058 Kafka
6798 DataNode

// hadoop-001 上启动生产者:
(base) [hadoop@hadoop-001 ~]$ kafka-console-producer.sh --bootstrap-server hadoop-001:9092 --topic myflink_source

// hadoop-002 上启动消费者 :
(base) [hadoop@hadoop-002 ~]$ kafka-console-consumer.sh --bootstrap-server hadoop-001:9092 --topic myflink_sink

四、运行flink程序

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

重生之我又是程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值