YOLO chp01-

学习YOLO的正确姿势:从入门到"真香"的奇妙之旅

YOLO系列模型的硬核表现:

  • YOLOv1最先提出单阶段检测+Grid Cell机制,在物体检测速度层面实现了质的飞跃
  • YOLOv5在Tesla T4上跑出140FPS
  • YOLOv8的Latency-Accuracy曲线表现卓越

YOLO模块化定制;

# 你的自定义YOLO可能是这样的
class MySuperYOLO(nn.Module):
    def __init__(self):
        self.backbone = SwinTransformer()  # 换上视觉Transformer引擎
        self.neck = BiFPN()                # 升级特征金字塔为顶配版 
        self.head = DecoupledHead()         # 把分类回归任务拆开调教
        self.loss = AlphaIoU()              # 最新出炉的损失函数

骨干网络(Backbone):负责提取图像的基础特征。
特征金字塔(Neck):整合不同尺度的特征,增强多尺度检测能力。
检测头(Head):预测边界框位置、类别和置信度。
损失函数(Loss):指导模型学习的目标函数。

YOLO玩法:

  • 加个CBAM注意力模块
  • 把SPPF换成ASFF,实验对比表马上丰满起来
  • 甚至能嫁接CLIP做开放词汇检测
$ git clone 最新黑科技
$ python train.py --cfg 玄学参数

–cfg 有啥用?
解耦代码和配置:代码(train.py )负责 “执行训练逻辑”,配置文件负责 “定义训练细节”。想换模型结构、调超参数,改配置文件就好,不用动训练代码的核心逻辑,维护起来轻松。
复用训练流程:比如你想拿同一套 train.py,测试不同模型结构(一个用 Swin 骨干、一个用 ResNet 骨干 ),或者对比不同学习率的效果,只需要准备多个配置文件,用 --cfg 指定就行,训练代码不用改。
记录实验细节:每个配置文件对应一套实验参数,方便后续复盘 “当时用了啥参数训练出的模型” ,也能快速复现实验。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值