YOLO系列模型的硬核表现:
- YOLOv1最先提出单阶段检测+Grid Cell机制,在物体检测速度层面实现了质的飞跃
- YOLOv5在Tesla T4上跑出140FPS
- YOLOv8的Latency-Accuracy曲线表现卓越
YOLO模块化定制;
# 你的自定义YOLO可能是这样的
class MySuperYOLO(nn.Module):
def __init__(self):
self.backbone = SwinTransformer() # 换上视觉Transformer引擎
self.neck = BiFPN() # 升级特征金字塔为顶配版
self.head = DecoupledHead() # 把分类回归任务拆开调教
self.loss = AlphaIoU() # 最新出炉的损失函数
骨干网络(Backbone):负责提取图像的基础特征。
特征金字塔(Neck):整合不同尺度的特征,增强多尺度检测能力。
检测头(Head):预测边界框位置、类别和置信度。
损失函数(Loss):指导模型学习的目标函数。
YOLO玩法:
- 加个CBAM注意力模块
- 把SPPF换成ASFF,实验对比表马上丰满起来
- 甚至能嫁接CLIP做开放词汇检测
$ git clone 最新黑科技
$ python train.py --cfg 玄学参数
–cfg 有啥用?
解耦代码和配置:代码(train.py )负责 “执行训练逻辑”,配置文件负责 “定义训练细节”。想换模型结构、调超参数,改配置文件就好,不用动训练代码的核心逻辑,维护起来轻松。
复用训练流程:比如你想拿同一套 train.py,测试不同模型结构(一个用 Swin 骨干、一个用 ResNet 骨干 ),或者对比不同学习率的效果,只需要准备多个配置文件,用 --cfg 指定就行,训练代码不用改。
记录实验细节:每个配置文件对应一套实验参数,方便后续复盘 “当时用了啥参数训练出的模型” ,也能快速复现实验。