- 博客(190)
- 收藏
- 关注
原创 Mining of Real-world Hypergraphs part1-2 逐字翻译解读
对于任意一个m×nm\times nm×n的实矩阵A\mathbf{A}A,奇异值分解可以将矩阵A\mathbf{A}A分解为三个矩阵的乘积,即AUΣVTAUΣVT。U\mathbf{U}U是一个m×mm\times mm×m的正交矩阵,它的列向量被称为左奇异向量;V\mathbf{V}V是一个n×nn\times nn×n的正交矩阵,它的列向量被称为右奇异向量;Σ\SigmaΣ是一个m×nm\times nm×n。
2025-08-11 20:57:38
778
原创 【Datawhale AI夏令营第三期AIGC 】TASK02
本赛题分为四个子任务,包括:AIGC图片生成、自然场景图片编辑、视觉文本编辑和Deepfake。
2025-08-10 23:43:35
906
原创 AudioLLM
所以如果要让模型支持语音,就需要为模型增加一个系统命令,在user里输入要转录为语音的文字,让模型从system里输出对应语音数据。提出的DualFFN架构:https://github.com/boson-ai/higgs-audio/blob/main/tech_blogs/ARCHITECTURE_BLOG.md。现有的方法是将一秒的语音信号裁切成多段(如100毫秒一段),为每一段匹配最相似的预定义模板(如45个模板),然后将其表示为长度为10的编号序列,也就是一个个token。
2025-08-09 21:41:21
601
原创 graph attention network
即当输入x > 0时,输出x;当x ≤ 0时,输出0。但它有一个缺陷:当输入长期为负数时,ReLU 会输出0,导致对应神经元的梯度为0,权重无法更新,这个神经元会永久「死亡」(不再参与学习),这就是「死亡 ReLU 问题」。
2025-07-31 21:47:16
619
原创 TASK02【Datawhale AI夏令营第二期】模型蒸馏 -思维链知识
resourceid一个标准的prompt能显著提升模型生成回答的质量,一个标准的prompt通常包含任务说明、问题、上下文、输出格式等四个基本元素。
2025-07-27 00:23:16
770
原创 Task04【datawhale组队学习】JoyRL&EasyRL DQN算法
改进方向分类- 网络模型层面:如 Double DQN、Dueling DQN ,优化网络结构与QQQ值预测逻辑。- 经验回放角度:如 PER DQN ,改进样本采样策略,提升数据利用效率。off-policy算法是指在学习策略(用于优化价值函数、更新参数 )和执行策略(与环境交互产生样本 )不同的情况下进行学习的强化学习算法。简单来说,就是用来生成数据的策略和用来优化的策略不是同一个策略。
2025-07-26 02:18:20
811
原创 TASK03【datawhale组队学习】DeepLearning
根据问题理解“创造新数据”(如图像翻转、裁剪),扩充训练集 → 让模型学通用规律,缓解过拟合。
2025-07-24 01:13:22
808
原创 TASK02【datawhale组队学习】视觉感知与手眼协调,计算机视觉在机器人中应用,手眼标定算法实现,深度估计与3D重建
参考教程AI硬件与机器人技术教程:https://github.com/datawhalechina/ai-hardware-robotics视觉感知与手眼协调,计算机视觉在机器人中应用,手眼标定算法实现,深度估计与3D重建单目深度估计 (Monocular Depth Estimation)DPT 的全称是 Dense Prediction Transformer。
2025-07-22 02:39:06
842
1
原创 Task03【datawhale组队学习】JoyRL&EasyRL
教程:https://datawhalechina.github.io/joyrl-book/#/ch6/main随机梯度下降(stochastic gradiant descent,SGD)小批量梯度下降(mini-batch gradiant descent)小批量随机梯度下降(mini-batch stochastic gradiant descent)反向传播算法(Backpropagation Algorithm)
2025-07-22 02:17:26
943
原创 Task02【datawhale组队学习】JoyRL&EasyRL
TDλλλ教程地址:https://datawhalechina.github.io/joyrl-book。
2025-07-20 00:36:28
655
原创 TASK01【datawhale组队学习】地瓜机器人具身智能概述
身体(Body):智能体的物理形态,包括各种传感器(如摄像头、激光雷达、触觉传感器)用于感知,以及执行器(如电机、机械臂、轮子)用于行动。大脑(Brain):即智能算法的核心,负责处理来自传感器的数据,进行思考、决策,并向执行器发出指令。这通常涉及到深度学习、强化学习、大语言模型等前沿AI技术。环境(Environment):智能体所处的物理世界。它是智能体学习和实践的舞台,充满着不确定性、动态变化和复杂的物理规律。
2025-07-17 23:25:45
1104
原创 Task01-2【datawhale组队学习】DeepLearning
损失函数的作用:构建一个函数LbwL(b, w)Lbw,输入是模型的未知参数bbbwww,输出是“当参数取这些值时,预测结果好不好”的量化指标。简单说,就是用损失函数判断“当前模型参数下,预测值和真实值的差距有多大”。实例计算演示先给参数赋值(如b500b = 500b500w1w = 1w1),得到具体预测函数y500x1y500x1;
2025-07-17 00:49:25
563
原创 TASK02【Datawhale AI夏令营学习笔记】大模型技术方向
该压缩包内必须包含一个名为 submit 的文件夹,并且该文件夹内必须包含两个 CSV 文件: submit_videos.csv 和 submit_comments.csv。常用方法包括独热编码、词嵌入 (如Word2Vec、GloVe等静态词向量)以及基于预训练模型的上下文词嵌入(如BERT、GPT等动态词向量)。评论聚类 (次高优先级): 基于前两步的结果,需要考虑聚类的效果评估(轮廓系数)和主题词提炼的质量。情感分析 (高优先级): 这是数据最丰富的部分,也是后面聚类的关键输入。
2025-07-13 23:54:16
796
原创 Task01【datawhale组队学习】JoyRL&EasyRL
多智能体强化学习就是在多个智能体的环境下进行强化学习,非静态问题:与单智能体环境不同,在多智能体环境中通常存在非静态问题,即环境的状态不仅由智能体的动作决定,还受到其他智能体的动作的影响。信号问题,即智能体之间可能需要进行通信以合作或竞争,如何高效地通信并从信号中学习是一个难题。信誉分配问题,在多智能体的合作任务中,确定每个智能体对于整体目标的贡献(或责任)是一个挑战。多智能体环境通常也存在复杂的博弈场景,对于此类研究往往引入博弈论来找到环境中的纳什均衡或其他均衡策略,但这是一个复杂的挑战。
2025-07-12 01:11:58
329
原创 【datawhale组队学习】Happyllm-Task08
Casual Language Model,下简称 CLM。Decoder-Only(GPT):像 “作家”,擅长从前往后 “创作” 内容,适合写文章、生成对话等 NLG 任务。Encoder-Only(BERT):像 “读者”,擅长 “理解” 现有文本的含义,适合阅读理解、语义匹配等 NLU 任务。Encoder-Decoder(T5):像 “翻译官”,既能理解输入(Encoder),又能生成输出(Decoder),在 Seq2Seq 任务(如翻译、摘要)中更灵活。
2025-07-02 01:05:00
778
原创 【datawhale组队学习】Happyllm-Task07
T5 的大一统思想将不同的 NLP 任务如文本分类、问答、翻译等统一表示为输入文本到输出文本的转换,这种方法简化了模型设计、参数共享和训练过程,提高了模型的泛化能力和效率。通过这种统一处理方式,T5不仅减少了任务特定的模型调试工作,还能够使用相同的数据处理和训练框架,极大地提升了多任务学习的性能和应用的便捷性。T5模型的一个核心理念是“大一统思想”,即所有的 NLP 任务都可以统一为文本到文本的任务,这一思想在自然语言处理领域具有深远的影响。结构,用于捕捉输入和输出序列之间的依赖关系。
2025-06-30 00:47:38
549
原创 datawhale组队学习-Happyllm-Task06
对于文本生成任务,也同样可以取 Encoder 的输出直接解码得到最终生成结果。因此,BERT 可以非常高效地应用于多种 NLP 任务。对于某些特定、训练数据丰富且强调高吞吐的任务,BERT 比 LLM 更具有可用性。
2025-06-25 00:45:49
1025
原创 YOLO-master task03 IOU总结
IoUIoU(Intersection over Union)用于衡量两个区域的重叠程度,常用于目标检测任务中评估预测框与真实框的匹配度。其值范围在01[0,1]01,1表示完全重叠,0表示无重叠。IoU交集面积并集面积\mathrm{IoU} = \frac{交集面积}{并集面积}IoU并集面积交集面积IoUAinterAunionAinterAbox1Abox2−AinterIoUAunionAinterAbox1。
2025-06-23 00:59:42
604
原创 HappyLLM-TASK04
上式中,pos 为 token 在句子中的位置,2i 和 2i+1 则是指示了 token 是奇数位置还是偶数位置,从上式中我们可以看出对于奇数位置的 token 和偶数位置的 token,Transformer 采用了不同的函数进行编码。在注意力机制的计算过程中,对于序列中的每一个 token,其他各个位置对其来说都是平等的,即“我喜欢你”和“你喜欢我”在注意力机制看来是完全相同的,但无疑这是注意力机制存在的一个巨大问题。很明显,这样的函数是不具有不对称性的,也就是无法表征相对位置信息。
2025-06-23 00:19:24
855
原创 【datawhale组队学习】YOLO-master -Task02
Yolo系列的发展历程YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的约瑟夫-雷德蒙(Joseph Redmon)和阿里-法哈迪(Ali Farhadi)开发。YOLO 于年推出,因其高速度和高精确度而迅速受到欢迎。YOLO12在保持实时性的同时,显著提升了性能和效率。
2025-06-21 00:55:23
672
原创 【datawhale组队学习】共读AI新圣经 -Task02
y(x,w)=w0+∑j=1M−1wjϕj(x)y(x,w)=w_0+\sum^{M-1}_{j=1}w_j\phi_j(x)y(x,w)=w0+∑j=1M−1wjϕj(x)ϕj(x)\phi_j(x)ϕj(x)称为基函数,如果用M-1表示索引j的最大值,则模型中参数的总数为M简单类比:可以把它想成“高级版线性方程”—— 基函数 ϕj(x)\phi_j(\boldsymbol{x})ϕj(x) 是对输入 xxx 的复杂变换(代替了简单的 xxx 幂次 ),www 是系数,最终输出是这些变换后结
2025-06-21 00:51:22
1044
原创 【datawhale组队学习】数学建模chp01解析方法与几何模型
声波在均匀介质中作匀速直线传播,在不同界面上产生反射,利用这一原理,从测量船换能器垂直向海底发射声波信号,并记录从声波发射到信号接收的传播时间,通过声波在海水中的传播速度和传播时间计算出海水的深度,其工作原理如图 4 所示。是在单波束测深的基础上发展起来的,该系统在与航迹垂直的平面内一次能发射出数十个乃至上百个波束,再由接收换能器接收由海底返回的声波,多波束测深系统克服了单波束测深的缺点,在海底平坦的海域内,能够测量出以测量船测线为轴线且具有一定宽度的全覆盖水深条带。对于逆时针旋转,二维旋转矩阵的形式是。
2025-06-19 00:48:11
616
原创 数学建模会议笔记
看似优化模型建立整数规划模型用优化软件、启发式方法、精确方法求解建立图论和组合优化模型用组合优化方法、启发式方法求解建立博弈论模型数据统计分析与可视化- 数据拟合、参数估计、插值、数据的标准化、去伪补全相关度分析、分类、聚类等最优化理论和方法线性规划图论与组合优化:最小树,最短路,最大流,TSP,背包非非线性规划整数规划:分支定界法、分解算法、割平面法NP-难问题的启发式方法:模拟退火、神经网络、遗传算法算法设计技巧:动态规划、分治法、贪法。
2025-06-18 23:57:05
988
原创 YOLO chp01-
复用训练流程:比如你想拿同一套 train.py,测试不同模型结构(一个用 Swin 骨干、一个用 ResNet 骨干 ),或者对比不同学习率的效果,只需要准备多个配置文件,用 --cfg 指定就行,训练代码不用改。解耦代码和配置:代码(train.py )负责 “执行训练逻辑”,配置文件负责 “定义训练细节”。想换模型结构、调超参数,改配置文件就好,不用动训练代码的核心逻辑,维护起来轻松。记录实验细节:每个配置文件对应一套实验参数,方便后续复盘 “当时用了啥参数训练出的模型” ,也能快速复现实验。
2025-06-17 00:28:39
323
原创 【datawhale组队学习】HappyLLM-chp01
NLP让我们从海量文本中提取有用信息,理解语言的深层含义提供了强有力的工具任务包括但不限于中文分词、子词切分、词性标注、文本分类、实体识别、关系抽取、文本摘要、机器翻译以及自动问答系统的开发抽取式摘要:抽取式摘要通过关键句子或短语来组成摘要。优点是摘要中的信息完全来自原文,因此准确性较高。然而,由于,有时候生成的摘要可能不够流畅。生成式摘要:与抽取式摘要不同,生成式摘要不仅涉及选择文本片段,还需要。生成式摘要更具挑战性,因为它需要理解文本的深层含义,并能够以新的方式表达相同的信息。
2025-06-17 00:05:46
811
原创 【datawhale组队学习】共读AI新圣经
生成式模型:generative model大语言模型:Large Language Model LLM)自回归语言莫i选哪个:autoregressive训练对:training pair训练集:training set学习:learning分类:classification回归:regression微调:fine-tune迁移学习:transfer learning通用人工智能:Artificial General Intelligence。
2025-06-16 23:45:16
893
1
原创 TASK06【Datawhale 组队学习】开源RAG项目学习
这里以该项目 project/qa_chain/model_to_llm.py 代码为例,在 project/llm/ 的目录文件夹下分别定义了 星火spark,智谱glm,文心llm等开源模型api调用的封装,并在 project/qa_chain/model_to_llm.py 文件中导入了这些模块,可以根据用户传入的模型名字进行调用 llm。在对知识库文本进行分割和向量化后,就需要定义一个向量数据库用来存放文档片段和对应的向量表示了,在向量数据库中,数据被表示为向量形式,每个向量代表一个数据项。
2025-05-26 01:11:32
1018
原创 TASK04【Datawhale 组队学习】构建RAG应用
langchain可以便捷地调用大模型,并将其结合在以langchain为基础框架搭建的个人应用中。
2025-05-21 23:26:55
678
原创 TASK03【Datawhale 组队学习】搭建向量知识库
它与传统的基于关系模型的数据库不同,它主要关注的是向量数据的特性和相似性。单个文档的长度往往会超过模型支持的上下文,导致检索得到的知识太长超出模型的处理能力,因此,在构建向量知识库的过程中,我们往往需要对文档进行分割,将单个文档按长度或者按固定的规则分割成若干个 chunk,然后将每个。词向量实际上是将单词转化为固定的静态的向量,虽然可以在一定程度上捕捉并表达文本中的语义信息,但忽略了单词在不同语境中的意思会受到影响这一现实。词向量背后的主要想理念是相似或相关的对象在向量空间中的距离应该很近。
2025-05-18 22:49:59
815
原创 TASK02【datawhale组队学习】coze-ai-assistant 第三章智能体
智能体(Agent):能够自主操作、作出决策的实体。设计目的是让它能够感知其环境,并根据感知到的信息作出反应;能够在其所处的环境中执行任务,并达到预定的目标。可能是实际的物理世界,也可能是数字世界,如虚拟环境或软件应用中。智能体不仅能够准确回答问题,还能随着使用逐渐变得更聪明和高效。Agent 和 LLM 在功能和应用场景上有明显的互补关系。Agent = LLM + 记忆 +规划技能 + 工具使用。可能是文本信息,也可能是语音、图片、视频等多模态信息。LLM则专注于自然语言的理解和生成。
2025-05-16 00:53:14
274
原创 TASK02【Datawhale 组队学习】使用 LLM API 开发应用
在以下的样例中,我们先给了一个 {<学生>:<圣贤>} 对话样例,然后要求模型用同样的隐喻风格回答关于“孝顺”的问题,可以看到 LLM 回答的风格和示例里<圣贤>的文言文式回复风格是十分一致的。提示词注入:用户输入的文本可能包含与你的预设 Prompt 相冲突的内容,如果不加分隔,这些输入就可能“注入”并操纵语言模型,轻则导致模型产生毫无关联的不正确的输出,严重的话可能造成应用的安全风险。的 Prompt 能够提供更丰富的上下文和细节,让模型可以更准确地把握所需的操作和响应方式,给出更符合预期的回复。
2025-05-15 22:42:29
936
原创 【datawhale组队学习】coze-ai-assistant TASK01
通过扣子开发的 AI 应用有明确的输入和输出,可以根据既定的业务逻辑和流程完成一系列简单或复杂的任务,例如 AI 搜索、翻译工具、饮食记录等。工作流具备了: 大量的重复性任务 (如内容创作、编辑、发布)和 固定的业务流程 (如策划、创作、审核、发布)。的 AI 项目,它通过对话方式接收用户的输入,由大模型自动调用插件或工作流等方式执行用户指定的业务流程,并生成最终的回复。教程:Coze / 扣子(飞书文档)10. 教程:Coze / 扣子。4万字教程-COZE/扣子与智能体入门(飞书文档)
2025-05-13 20:33:05
1229
原创 【datawhale 组队学习】task01 第一章LLM介绍
时间安排如下国外的知名 LLM 有 GPT、LLaMA、Gemini、Claude 和 Grok 等国内的有 DeepSeek、通义千问、豆包、Kimi、文心一言、GLM 等。涌现能力:尽管这些大型语言模型与小型语言模型(例如 3.3 亿参数的 BERT 和 15 亿参数的 GPT-2)使用相似的架构和预训练任务,但它们展现出截然不同的能力,尤其在解决复杂任务时表现出了惊人的潜力,这被称为“涌现能力”GPT-3 可以通过学习上下文来解决少样本任务,而 GPT-2 在这方面表现较差。
2025-05-13 18:59:57
1175
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人