
BEV Map 端到端矢量化地图构建
文章平均质量分 61
BEV Map 端到端矢量化地图构建
BILLY BILLY
一个自动驾驶领域的菜鸟
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
MapTR v1v2原作者讲解
原创 2025-07-25 07:39:28 · 193 阅读 · 0 评论 -
车道线二值图解码
二值图解码原创 2024-08-16 13:38:21 · 254 阅读 · 0 评论 -
如何计算车道线的F1-score指标
车道线f1-score指标计算原创 2024-08-15 14:38:45 · 373 阅读 · 0 评论 -
LaneNet(2):工程代码复现(pytorch版本)(15分钟上手)
实时端到端车道线检测网络LaneNet工程复现原创 2024-07-13 10:38:15 · 668 阅读 · 0 评论 -
tusimple车道线检测 标注自己的数据集
tusimple车道线检测 标注自己的数据集原创 2024-07-13 12:04:44 · 1438 阅读 · 0 评论 -
【BEV车道线检测】BEV-LaneDet:论文及代码讲解
介绍:这篇文章是在单目场景下在bev视图下实现车道线检测的方法,其车道线检测的基础方法是源自于bev视图下车道线分割,再通过预测几个附加预测头用于辅助后处理。具体来讲创新点主要有三点:(1)使用MLP进行2D特征到3D BEV特征的bev视角转换(为了在低算力芯片上进行部署,没有使用Transformer和LSS等方法)(2)使用虚拟相机(用于MLP方法的空间转换,没有利用起相机参数,所以需要使用标准的虚拟相机,将所有训练的图片根据各自采集车的真实相机内外侧转换到虚拟相机的相机参数下)(3)原创 2024-03-07 15:06:37 · 4270 阅读 · 10 评论 -
【AI论文阅读】LaneNet:一种实例分割方法的端到端车道线检测模型
本文提出了一种端到端的车道线检测方法LanNet+H-Net。LanNet采用多任务模型,通过语义分割和像素矢量表示两个分支实现实例分割,结合Mean-Shift聚类算法。H-Net预测透视变换矩阵H,适应斜坡道路场景。实验表明,该方法准确率达96.4%,处理速度达52-78FPS,能有效处理遮挡和复杂路况。网络结构包含ENet编码器-解码器和轻量级H-Net,通过特定损失函数优化特征空间分布,实现车道线像素精确聚类。该方法在实时性和准确性上均表现优异。原创 2024-07-13 02:38:40 · 1511 阅读 · 1 评论 -
BEV感知实时构建路口拓扑 觉非科技基于MapTR的优化与实践
觉非科技基于MapTR方法,通过车路协同数据积累对实时矢量建图技术进行优化:1)改进车道信息表达,增加中心线、方向及宽度属性输出;2)引入地图先验信息提升复杂路口的拓扑识别准确率;3)优化道路拓扑表达,实现自动车道挂接。这些改进使建图结果更符合自动驾驶规控需求,在nuScenes数据集上展现出优越性能。该技术通过多任务联合训练持续迭代,为自动驾驶感知系统提供更安全可靠的实时环境理解能力。原创 2025-07-22 23:01:05 · 646 阅读 · 0 评论 -
【实时建图】MapTR(4)------训练
MAPTR训练原创 2024-08-13 17:11:50 · 273 阅读 · 0 评论 -
【实时建图】MapTR(3)------数据集整理
MapTR 数据集准备原创 2024-08-07 16:27:15 · 236 阅读 · 0 评论 -
【实时建图】MapTR(2)------环境配置
MapTR 环境配置教程原创 2024-08-07 14:55:19 · 245 阅读 · 0 评论 -
【实时建图】MapTR(1)------ 论文详解
MapTR论文解读原创 2024-08-06 23:57:11 · 507 阅读 · 0 评论 -
MapTRV2解读
MapTRV2在V1基础上进行了优化升级,主要改进包括:1)解耦self-attention降低计算复杂度;2)发现BEV特征更适合地图重建任务;3)针对nuScenes等缺少高度信息的场景优化处理;4)补充了中心线建模,并引入训练技巧加速收敛。虽然计算效率提升,但推理速度未明显改善。该版本通过架构优化和训练策略调整,实现了性能提升,是MapTR的增强版。原创 2025-07-06 07:54:06 · 37 阅读 · 0 评论 -
MapTR解读
MapTR技术摘要(150字) MapTR提出了一种创新的高精地图建模方法,通过置换等价建模解决点集顺序问题。核心创新包括:1) 将地图元素建模为具有等价置换的点集,统一处理顺时针/逆时针方向问题;2) 设计层次化查询嵌入结构(实例队列+点队列),采用双层注意力机制获取BEV特征;3) 引入层次化双边匹配策略(实例级+点级匹配)和方向损失约束形状。训练使用多任务损失(类别、曼哈顿距离、方向)和匈牙利算法匹配。该方法通过BEVFormer架构实现,支持端到端训练,有效解决了地图元素建模中的点序敏感性难题,为自原创 2025-07-06 07:48:11 · 38 阅读 · 0 评论 -
端到端矢量化地图构建与规划
原创 2025-07-06 22:16:35 · 89 阅读 · 0 评论 -
BEV 在线实时局部地图构建的三个经典方案对比和思考(HDMapNet,VectorMapNet,MapTR)
本文对比分析了三种基于BEV范式的在线局部高精地图生成方案:HDMapNet(2022)采用语义分割思路,通过三个分支分别处理语义、实例嵌入和方向,需复杂后处理;VectorMapNet(2022)创新性地将地图要素抽象为关键点,结合DETR框架实现端到端检测,但依赖序列生成导致效率受限;MapTR(2023)在VectorMapNet基础上改进,直接预测固定长度点集并引入顺序无关机制,在精度(mAP提升15%)和效率(达25FPS)上显著提升,成为当前最优解决方案。三种方案体现了从分割到检测、从非端到端到原创 2025-07-22 22:43:00 · 646 阅读 · 0 评论