卡码网98. 所有可达路径(邻接矩阵dfs)

原理

题目目标:在有向图中找到从节点1到节点n的所有可能路径,并按特定格式输出。
核心逻辑

  1. 深度优先搜索(DFS)​:从起点(节点1)出发,递归遍历所有邻接节点,直到到达终点(节点n)。
  2. 路径记录与回溯:维护一个路径列表 path,记录当前遍历路径,到达终点时将路径存入结果列表 result
  3. 邻接矩阵表示图:通过二维数组 graph 存储图的连接关系,graph[s][t] = 1 表示存在边 s→t

步骤

  1. 输入处理:读取节点数 n、边数 m,构建邻接矩阵。
  2. 初始化路径:将起点节点1加入初始路径。
  3. DFS遍历
    • 从节点1开始,递归访问每个邻接节点。
    • 到达终点时记录完整路径。
    • 回溯时移除当前节点,继续探索其他分支。
  4. 结果输出:若没有路径,输出-1;否则按格式输出所有路径。

图示法表示步骤(以示例输入为例)

假设输入为:

3 3  
1 2  
1 3  
2 3  
  1. 邻接矩阵
    1→2, 1→3, 2→3  
  2. DFS过程
    • 从节点1出发,探索节点2和3。
    • 路径1→2→3存入结果。
    • 回溯到节点1,探索节点3,路径1→3存入结果。
  3. 输出结果
    1 2 3  
    1 3  

代码程序及关键行注释

#include <iostream>  
#include <vector>  
using namespace std;  

vector<vector<int>> result; // 存储所有路径  
vector<int> path; // 当前路径  

// DFS遍历邻接矩阵  
void dfs(const vector<vector<int>>& graph, int x, int n) {  
    if (x == n) { // 到达终点,记录路径  
        result.push_back(path);  
        return;  
    }  
    for (int i = 1; i <= n; i++) { // 遍历所有可能的邻接节点  
        if (graph[x][i] == 1) {    // 存在边 x→i  
            path.push_back(i);     // 将i加入路径  
            dfs(graph, i, n);      // 递归深入  
            path.pop_back();       // 回溯,移除i  
        }  
    }  
}  

int main() {  
    int n, m, s, t;  
    cin >> n >> m;  
    vector<vector<int>> graph(n + 1, vector<int>(n + 1, 0)); // 邻接矩阵  

    while (m--) {  
        cin >> s >> t;  
        graph[s][t] = 1; // 标记边 s→t  
    }  

    path.push_back(1);   // 初始路径包含起点  
    dfs(graph, 1, n);    // 开始DFS遍历  

    if (result.empty()) cout << -1 << endl;  
    for (const vector<int>& pa : result) {  
        for (int i = 0; i < pa.size() - 1; i++) {  
            cout << pa[i] << " ";  
        }  
        cout << pa.back() << endl; // 输出路径的最后一个节点  
    }  
}  

时间复杂度

  • 时间复杂度:​O(n!),最坏情况下每个节点都与其他所有节点连接,路径数量为阶乘级别。
  • 适用性:适用于小规模图(节点数≤10),但对于大规模图效率极低。

总结

  1. 代码优势
    • 实现简单,直接通过邻接矩阵和DFS遍历所有路径。
    • 回溯机制清晰,路径记录完整。
  2. 潜在问题
    • 环路处理:未检查重复访问节点,若图中有环会导致无限递归(例如1→2→1循环)。
    • 性能问题:路径数量可能随节点数呈指数增长,无法处理较大规模的图。
  3. 改进方向
    • 添加访问标记:引入 visited 数组或检查当前路径是否包含节点,避免重复访问。
    • 限制路径长度:若题目要求简单路径(无重复节点),需在递归前检查节点是否已存在路径中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值