topK问题

本文介绍了TopK问题的多种解决方案,包括使用排序、堆结构及快速选择算法等,并提供了具体的C++实现示例,如最小堆和快速排序的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

topK问题常见形式:

  1. 找第K大(第K小)的数
  2. 找出最大(最小)的前K个数
  3. 求前K词频的单词

解决Top K问题方法:

  1. sort排序
  2. 最大堆最小堆
  3. 快速排序

使用最大最小堆:求最大的数用最小堆,求最小的数用最大堆;
Quick Select算法:使用类似快排的思路,根据pivot划分数组
使用排序方法:排序后再寻找top K元素

举例:

最小的k个数:

输入整数数组 arr ,找出其中最小的 k 个数。例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。
示例:

输入:arr = [3,2,1], k = 2
输出:[1,2] 或者 [2,1]

快速排序方法:

class Solution {
public:
    vector<int> getLeastNumbers(vector<int>& arr, int k) {
        vector<int> res;
        quicksort(arr, 0, arr.size()-1);
        res.assign(arr.begin(), arr.begin()+k);
        return res;
    }
private:
    void quicksort(vector<int>& arr, int l, int r) {
        if (l>=r) return;
        int i = l, j = r;
        while (i < j) {
            while (i <j && arr[j] >= arr[l]) j--;
            while (i < j && arr[i] <= arr[l]) i++;
            swap(arr[i], arr[j]);
        }
        swap(arr[l], arr[i]);

        quicksort(arr, l, i - 1);
        quicksort(arr, i+1, r);
    }
};

最大堆:

class Solution {
public:
    vector<int> getLeastNumbers(vector<int>& arr, int k) {
        if(arr.empty() || k == 0) {return {};}
        vector<int> res(k);
        priority_queue<int> max_heap;

        for(int i = 0; i < k; ++i) {max_heap.push(arr[i]);} // 用 arr 的前 k 个数填充最大堆
        for(int i = k; i < arr.size(); ++i) {
            if(arr[i] < max_heap.top()){
                max_heap.pop();
                max_heap.push(arr[i]); // 循环更新最大堆
            }
        }
        for(int i = 0; i < k; ++i) {
            res[i] = max_heap.top(); // 填充 res
            max_heap.pop();
        }

        return res;
    }
};

知识补充:C++ 创建大顶堆和小顶堆的写法

  • 优先队列有三个参数,其声明形式为:priority_queue< type, container, function>;。后两个参数可以省略,第一个参数不能省略。
  • 构建大顶堆:
    priority_queue max_heap;
    或者:priority_queue<int,vector,less > max_heap;
  • 构建小顶堆:
    priority_queue<int,vector,greater > min_heap;
<think>好的,我现在需要帮助用户了解Top K算法的相关概念、解决方法以及应用场景。首先,我应该回顾一下用户提供的引用内容,确保信息准确,并且正确引用。 首先,根据引用[1],TopK算法用于快速找出数据集中前K个最大或最小的元素,常见于电商和音乐应用。时间复杂度是O(nlogk),使用堆排序思想。引用[2]提到TopK的解决方案,比如全局排序,但可能效率不高,需要优化思路。引用[3]则详细说明了堆结构在TopK中的应用,特别是如何维护堆顶元素。 接下来,我需要组织回答的结构,按照用户的要求,分概念、解决方案、应用场景三个方面。每个部分要结合引用内容,并自然地添加引用标识。同时,需要确保使用正确的中文表达,数学公式用$...$或$$...$$格式,比如时间复杂度写成$O(n \log k)$。 在解决方案部分,要列出不同的方法,如全局排序、局部堆调整、快速选择算法,并比较它们的优缺点。这里需要注意引用[2]和[3]中的内容,尤其是堆的实现和优化思路。例如,堆方法的时间复杂度来自引用[1],而快速选择算法可能需要引用补充的知识,但用户提供的引用中没有提到,可能需要避免详细展开,或者仅简要提及。 应用场景部分,根据引用[1]和[2]中的例子,如电商、音乐推荐、排行榜等,需要具体说明每个场景如何应用TopK算法,并正确添加引用标记。 最后生成相关问题,确保问题TopK相关,覆盖实现细节、优化、应用场景比较等,参考示例中的问题结构。 需要检查LaTeX格式是否正确,例如时间复杂度中的log应该用斜体,即$\log$,确保所有数学表达式正确。例如,堆调整的时间复杂度是$O(n \log k)$,而不是O(nlogk)。 同时,避免使用Markdown格式,保持回答自然流畅。注意引用标识的位置,如每个引用出现在对应的解释末尾,如使用堆方法时引用[1]和[3]。 可能需要注意的地方:用户提供的引用中没有提到快速选择算法,所以这部分可能需要简要说明,但不要过于详细,或者可以指出这是另一种方法,但不在当前引用范围内。或者,可能用户希望仅基于提供的引用来回答,所以可能需要仅涵盖引用中的方法,即全局排序和堆方法,以及可能的其他方法如分治处理,但引用中没有明确提到,所以可能应避免引入外部知识。 综上所述,整理回答结构,确保每个部分正确引用,公式正确,问题相关且符合用户要求。</think>### Top K 算法详解 #### 一、核心概念 Top K 算法用于从大规模数据集中快速筛选出前$K$个最大或最小的元素,例如电商平台筛选销量最高的前10个商品,或音乐平台统计播放量前100的歌曲[^1]。其核心目标是通过优化时间复杂度(如$O(n \log K)$)避免全局排序的低效性。 #### 二、解决方案 1. **全局排序法** 将数据集完全排序后取前$K$个元素。例如对$n$个元素使用快速排序(时间复杂度$O(n \log n)$),但当$K \ll n$时效率较低[^2]。 *适用场景*:数据规模较小时。 2. **堆调整法** - **最小堆(求最大K个元素)**:维护一个容量为$K$的最小堆,遍历数据时若元素大于堆顶则替换堆顶并调整堆。时间复杂度为$O(n \log K)$[^3]。 - **最大堆(求最小K个元素)**:原理类似,但堆顶为最大值。 *代码片段*(Python实现最小堆): ```python import heapq def topk_max(arr, k): heap = [] for num in arr: if len(heap) < k: heapq.heappush(heap, num) elif num > heap[0]: heapq.heapreplace(heap, num) return heap ``` 3. **快速选择算法** 基于快速排序的分区思想,每次选取基准值将数据划分为两部分,仅在包含前$K$元素的区间递归操作。平均时间复杂度为$O(n)$,但最坏情况为$O(n^2)$。 #### 三、应用场景 1. **电商推荐**:实时更新销量Top 10商品 2. **社交平台**:计算用户粉丝数排行榜 3. **数据监控**:快速定位服务器访问量最高的IP地址 4. **金融风控**:识别交易金额异常的前K笔记录 #### 性能对比 | 方法 | 时间复杂度 | 空间复杂度 | 适用场景 | |--------------|------------------|------------|-----------------------| | 全局排序 | $O(n \log n)$ | $O(n)$ | 小规模数据 | | 堆调整 | $O(n \log K)$ | $O(K)$ | 数据流或大规模数据[^3]| | 快速选择 | $O(n)$(平均) | $O(1)$ | 允许修改原数组 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值