YoloV8改进策略:将DCN v1与v2运用到YoloV8中,化身成上分小黑子

本文探讨了在YOLOV8中应用DCNv1和DCNv2以提高模型性能,分析了两者背景及原理,并通过实验比较了两种方法的效果。虽然结果显示地图得分提升,但DCN的计算复杂度高,消耗显存,可能导致训练速度慢。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

在前面的文章中,我们尝试用DCNv3替换YoloV8中的结构,实现了分数的上涨。在这篇文章中,我们尝试用DCNv1与DCNv2.比一比哪个才是最优秀的小黑子。
在这里插入图片描述

DCNv1和DCNv2(可变形卷积)

论文链接:

  • DCN v1论文https://arxiv.org/pdf/1703.06211.pdf
  • DCN v2论文https://arxiv.org/pdf/1811.1116

背景

在计算机视觉领域,同一物体在不同场景,角度中未知的几何变换是检测/识别的一大挑战,通常来说我们有两种做法:

(1)通过充足的数据增强,扩充足够多的样本去增强模型适应尺度变换的能力。

(2)设置一些针对几何变换不变的特征或者算法,比如SIFT和sliding windows。

两种方法都有缺陷,第一种方法因为样本的局限性显然模型的泛化能力比较低,无法泛化到一般场景中,第二种方法则因为手工设计的不变特征和算法对于过于复杂的变换是很难的而无法设计。所以作者提出了Deformable Conv(可变形卷积)。

可变形卷积

可变形卷积顾名思义

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值