YoloV8改进策略:Conv2Former与YoloV8深度融合,极简网络,极高性能

本文提出了卷积调制操作Conv2Former,简化自注意力机制,用于YoloV8网络,提升了性能。通过在卷积层中引入大核卷积和Hadamard积,Conv2Former在ImageNet分类、COCO对象检测和ADE20k语义分割上超越了现有模型。实验表明,Conv2Former在保持线性计算复杂度的同时,利用大核卷积获取更优的识别性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

Conv2Former是在ConvNeXt基础上,做了进一步的优化,性能得到了提升。我们尝试将Conv2Former加入到YoloV8中,会发生什么样的反应呢?

论文翻译

摘要

本文并没有试图设计一种最先进的视觉识别方法,而是研究了一种更有效的方法,利用卷积来编码空间特征。通过比较最近的卷积神经网络(ConvNets)和Vision transformer的设计原理,我们提出利用卷积调制操作来简化自注意。我们证明了这样一个简单的方法可以更好地利用嵌套在卷积层中的大内核(≥7 × 7)。我们使用所提出的卷积调制(称为Conv2Former)构建了一个层次ConvNets家族。我们的网络简单易懂。实验表明,我们的Conv2Former在所有ImageNet分类、COCO对象检测和ADE20k语义分割方面都优于现有的流行ConvNets和vision Transformers,如Swin Transformer和ConvNeXt。

1、简介

在2010年代,视觉识别领域的巨大进步主要集中在卷积神经网络(ConvNets)上,以VGGNet[63]、Inception系列[65-67]和ResNet系列[21、30、85、98]等为代表。这些识别模型大多通过堆叠多个构建块和采用金字塔网络架构来聚集具有大接受域的响应,但忽略了显式建模全局上下文信息的重要性。SENet系列[3,35,39,80]突破了传统的cnn设计,在cnn中引入了基于注意的机制来捕获长期依赖关系,获得了令人惊讶的良好性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值