YoloV8改进策略:将ConvNextV2与YoloV8激情碰撞,能迸发出什么样的火花呢?

本文介绍了将ConvNextV2 Block与YoloV8相结合,通过全卷积掩码自编码器解决特征坍塌问题,提高预训练效率。在自监督学习框架下,提出全局响应归一化(GRN)层,增强通道间特征竞争,有效缓解特征坍缩,改善模型性能。实验表明,ConvNeXt V2在ImageNet、COCO和ADE20K等任务上展现出优越性能,尤其是在纯卷积网络中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

这篇文章我们将YoloV8和ConvNextv2的Block相结合,将最强的CNN Block放入YoloV8中,会发生什么样的反应呢? 我们一起尝试吧!

首先,我们一起来阅读论文,然后再去学习ConvNextV2的Block。学会了Block以后,我们将Block加入到YoloV8的网络中,对比改进后的结果!最后,作总结。

论文翻译

摘要

论文链接:ConvNeXt V2
在改进的架构和更好的表示学习框架的推动下,视觉识别领域在21世纪20年代初实现了快速现代化和性能提升。例如,以ConvNeXt[52]为代表的现代ConvNets在各种场景中都表现出了强大的性能。虽然这些模型最初是为使用ImageNet标签的监督学习而设计的,但它们也可能受益于自监督学习技术,如蒙面自编码器(MAE)[31]。然而,我们发现,简单地结合这两种方法会导致性能不佳。在本文中,我们提出了一个全卷积掩码自编码器框架和一个新的全局响应归一化(GRN)层,可以添加到ConvNeXt架构中,以增强通道间的特征竞争。这种自我监督学习技术和架构改进的共同设计产生了一个名为ConvNeXt V2的新模型家族,它显著提高了纯ConvNets在各种识别基准上的性能,包括ImageNet分类、CO

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值