数组
数组就是有限的元素序列,用于储存多个相同类型数据的集合。若将有限个类型相同的变量的集合命名,那么这个名称为数组名。组成数组的各个变量称为数组的分量,也称为数组的元素,有时也称为下标变量。用于区分数组的各个元素的数字编号称为下标。
二次封装数组
平常我们所用到的都是静态数组,静态数组的话就是提前分配好一定大小的空间,然后我们用的时候直接把数据放到分配好的空间中。数组是顺序存储的,数据都是一个一个的放进去的,放成一排,如果我们做存取操作的话就要在这个数组中进行数据的存取。
动态数组的话就是在元素达到一定的数量之后进行数组的扩容,这样只要有内存的话就可以直接添加元素,删除元素的话还可以进行回收数组空间,当然在Java中空间都是由垃圾回收机制自动回收的,但是我们这是二次封装数组,相当于底层实现,所以我们就需要进行数组的扩容和缩容。
public class Array<E> {
private E[] data;
private int size;
// 构造函数,传入数组的容量capacity构造Array
public Array(int capacity){
data = (E[])new Object[capacity];
size = 0;
}
// 无参数的构造函数,默认数组的容量capacity=10
public Array(){
this(10);
}
// 获取数组的容量
public int getCapacity(){
return data.length;
}
// 获取数组中的元素个数
public int getSize(){
return size;
}
// 返回数组是否为空
public boolean isEmpty(){
return size == 0;
}
// 在index索引的位置插入一个新元素e
public void add(int index, E e){
if(index < 0 || index > size)
throw new IllegalArgumentException("Add failed. Require index >= 0 and index <= size.");
if(size == data.length)
resize(2 * data.length);
for(int i = size - 1; i >= index ; i --)
data[i + 1] = data[i];
data[index] = e;
size ++;
}
// 向所有元素后添加一个新元素
public void addLast(E e){
add(size, e);
}
// 在所有元素前添加一个新元素
public void addFirst(E e){
add(0, e);
}
// 获取index索引位置的元素
public E get(int index){
if(index < 0 || index >= size)
throw new IllegalArgumentException("Get failed. Index is illegal.");
return data[index];
}
public E getLast(){
return get(size - 1);
}
public E getFirst(){
return get(0);
}
// 修改index索引位置的元素为e
public void set(int index, E e){
if(index < 0 || index >= size)
throw new IllegalArgumentException("Set failed. Index is illegal.");
data[index] = e;
}
// 查找数组中是否有元素e
public boolean contains(E e){
for(int i = 0 ; i < size ; i ++){
if(data[i].equals(e))
return true;
}
return false;
}
// 查找数组中元素e所在的索引,如果不存在元素e,则返回-1
public int find(E e){
for(int i = 0 ; i < size ; i ++){
if(data[i].equals(e))
return i;
}
return -1;
}
// 从数组中删除index位置的元素, 返回删除的元素
public E remove(int index){
if(index < 0 || index >= size)
throw new IllegalArgumentException("Remove failed. Index is illegal.");
E ret = data[index];
for(int i = index + 1 ; i < size ; i ++)
data[i - 1] = data[i];
size --;
data[size] = null; // loitering objects != memory leak
//均摊复杂度
//防止复杂度震荡,就是说防止一次扩容一次缩容操作,留余一些可操作空间
if(size == data.length / 4 && data.length / 2 != 0)
resize(data.length / 2);
return ret;
}
// 从数组中删除第一个元素, 返回删除的元素
public E removeFirst(){
return remove(0);
}
// 从数组中删除最后一个元素, 返回删除的元素
public E removeLast(){
return remove(size - 1);
}
// 从数组中删除元素e
public void removeElement(E e){
int index = find(e);
if(index != -1)
remove(index);
}
@Override
public String toString(){
StringBuilder res = new StringBuilder();
res.append(String.format("Array: size = %d , capacity = %d\n", size, data.length));
res.append('[');
for(int i = 0 ; i < size ; i ++){
res.append(data[i]);
if(i != size - 1)
res.append(", ");
}
res.append(']');
return res.toString();
}
// 将数组空间的容量变成newCapacity大小
private void resize(int newCapacity){
E[] newData = (E[])new Object[newCapacity];
for(int i = 0 ; i < size ; i ++)
newData[i] = data[i];
data = newData;
}
}
特殊情况
在元素的增加和删除的时候,如果在最后边增加元素和删除元素,那么事件复杂度就是O(1),在最前边删除或者增加元素的话,需要把后边的元素全往前挪动或者往后挪动,那么时间复杂度就是O(n)。
均摊复杂度
加入一个数组开始的时候创建8个空间,我们添加了第九个元素的时候,做了17次操作(9次添加+8次元素的赋值【扩容的时候】),相当于每次添加一个元素做了两步操作,可以推导出当添加n个元素的时候也是基本上一个元素做两步操作,那么这个均摊复杂度就是O(1);
复杂度震荡
还是上边这个例子,如果添加了8个元素之后添加第9个元素的时候,会进行一次扩容,然后不再进行添加元素,进行删除元素,那么紧跟随着缩容,那么这样的话每次时间复杂度都是O(n)操作,时间复杂度达到了最差的情况,这就是时间复杂度的震荡,那么在数组中我们就应该解决这个问题,就是当删除的时候不随时都进行缩容。
//均摊复杂度
//防止复杂度震荡,就是说防止一次扩容一次缩容操作,留余一些可操作空间
if(size == data.length / 4 && data.length / 2 != 0)
resize(data.length / 2);
return ret;
就像这样代码改成了这个样子,在数据个数为总数组的四分之一的时候进行缩容,缩容成数组空间的一半,那么在添加元素和删除的时候就会留有一定的活动空间,这样就解决了复杂度震荡的问题。