spark的分区详解

文章详细阐述了Spark中的partition与HDFS中block的关系,block作为存储的最小单元,而partition是计算的最小单元。Spark默认按HDFS的block数进行分区,HashPartitioner可能导致数据倾斜,RangePartitioner则保证数据更均匀分布。同时,介绍了如何根据应用需求自定义分区策略,并讨论了合理设置分区数对性能的影响,指出应基于总核数的2~3倍来设定分区数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、spark中partition与HDFS中block的关系

hdfs中的block是分布式存储的最小单元,类似于盛放文件的盒子,一个文件可能要占多个盒子,但一个盒子里的内容只可能来自同一份文件。假设block设置为128M,你的文件是250M,那么这份文件占3个block(128+128+2)。这样的设计虽然会有一部分磁盘空间的浪费,但是整齐的block大小,便于快速找到、读取对应的内容。(p.s. 考虑到hdfs冗余设计,默认三份拷贝,实际上3*3=9个block的物理空间。)

spark中的partition 是弹性分布式数据集RDD的最小单元,RDD是由分布在各个节点上的partition 组成的。partition 是指的spark在计算过程中,生成的数据在计算空间内最小单元,同一份数据(RDD)的partition 大小不一,数量不定,是根据application里的算子和最初读入的数据分块数量决定的,这也是为什么叫“弹性分布式”数据集的原因之一。

总结:

block位于存储空间、partition 位于计算空间,

block的大小是固定的、partition 大小是不固定的,

block是有冗余的、不会轻易丢失,partition(RDD)没有冗余设计、丢失之后重新计算得到。

理解Spark从HDFS读入文件默认是怎样分区的

Spark从HDFS读入文件的分区数默认等于HDFS文件的块数(blocks),HDFS中的block是分布式存储的最小单元。如果我们上传一个30GB的非压缩的文件到HDFS,HDFS默认的块容量大小128MB,因此该文件在HDFS上会被分为235块(30GB/128MB);Spark读取SparkContext.textFile()读取该文件,默认分区数等于块数即235。

2、为什么会分区

Spark RDD是一种分布式的数据集,由于数据量很大,因此要它被切分并存储在各个结点的分区当中。从而当我们对RDD进行操作时,实际上是对每个分区中的数据并行操作。我们需要注意的是,只有Key-Value类型的RDD才有分区的,非Key-Value类型的RDD分区的值是None的。

3、Spark RDD 分区函数

1.HashPartition

HashPartitioner确定分区的方式:partition = key.hashCode() % numPartitions

弊端:弊端是数据不均匀,容易导致数据倾斜,极端情况下某几个分区会拥有rdd的所有数据。

2.RangePartitioner

RangePartitioner会对key值进行排序,然后将key值被划分成分区份数key值集合。

特点:RangePartitioner分区则尽量保证每个分区中数据量的均匀,而且分区与分区之间是有序的,也就是说一个分区中的元素肯定都是比另一个分区内的元素小或者大;但是分区内的元素是不能保证顺序的。简单的说就是将一定范围内的数映射到某一个分区内。其原理是水塘抽样 -----水塘抽样(Reservoir Sampling)问题。

3.CustomPartitioner

CustomPartitioner可以根据自己具体的应用需求,自定义分区。

1)spark默认实现了HashPartitioner和RangePartitioner两种分区策略,我们也可以自己扩展分区策略,自定义分区器的时候继承org.apache.spark.Partitioner类,实现类中的三个方法

def numPartitions: Int:这个方法需要返回你想要创建分区的个数;

def getPartition(key: Any): Int:这个函数需要对输入的key做计算,然后返回该key的分区ID,范围一定是0到numPartitions-1;

equals():这个是Java标准的判断相等的函数,之所以要求用户实现这个函数是因为Spark内部会比较两个RDD的分区是否一样。

2)使用,调用parttionBy方法中传入自定义分区对象

4、Spark 如何设置合理分区数

1、分区数越多越好吗?

不是的,分区数太多意味着任务数太多,每次调度任务也是很耗时的,所以分区数太多会导致总体耗时增多。

2、分区数太少会有什么影响?

分区数太少的话,会导致一些结点没有分配到任务;另一方面,分区数少则每个分区要处理的数据量就会增大,从而对每个结点的内存要求就会提高;还有分区数不合理,会导致数据倾斜问题。

3、合理的分区数是多少?如何设置?

总核数=executor-cores * num-executor

一般合理的分区数设置为总核数的2~3倍

### 回答1: Spark分区是指将数据集划分为多个部分,以便在分布式计算中进行并行处理。每个分区都是独立的,可以在不同的节点上进行处理,从而提高计算效率。 Spark中的分区可以是基于哈希函数的分区,也可以是基于范围的分区。哈希分区是将数据集中的每个元素都映射到一个分区中,而范围分区是将数据集中的元素按照一定的顺序划分到不同的分区中。 分区的数量可以通过设置参数来控制,通常情况下,分区的数量应该与集群中的CPU核心数量相同或者是其倍数,以充分利用集群的计算资源。 在Spark中,分区是一个重要的概念,它可以影响到计算效率和数据处理的质量。因此,在进行Spark编程时,需要对分区有深入的了解,并根据实际情况进行合理的设置。 ### 回答2: Spark是一个分布式计算框架,在处理海量数据时,如何让数据分布在不同的节点上,以充分利用集群的资源并提高计算效率,这就需要对数据进行分区,而Spark分区就是为了实现这个目的。 Spark分区是数据在分布式集群中的一个重要概念,每个分区可以看作是集群中的一个节点,Spark读取或写入数据时,就是对分区进行操作。因此,Spark分区的划分能够显著影响Spark应用程序的性能。 Spark分区通常有两种方式,一种是默认的哈希分区方式,另一种是根据开发者的需要自定义分区方式。 哈希分区方式是Spark默认的分区方式,通过对key进行哈希散列得到每个元素所在分区的编号。哈希分区具有高效性,在大多数情况下已经能够满足应用程序的需求。例如,如果使用reduceByKey()或sortByKey()等算子,Spark会自动使用哈希分区。 自定义分区方式可以根据应用程序的需求来配置分区。自定义分区需要实现Partitioner接口,实现其中的numPartitions()方法和getPartition()方法,前者是用于获取分区的数量,后者则是用于获取给定键的分区编号。自定义分区方式一般适用于具有特殊维度,并且存储数据需要在一起的数据场景。 Spark分区能够提高Spark的并行度,从而提高Spark应用程序的性能。如果分区数量太少,每个分区会包含大量的数据,那么在运行大规模任务时,就会出现瓶颈现象,影响任务的效率。因此,需要根据数据量和计算资源来确定分区数量,以充分发挥Spark的优势。 总的来说,Spark分区大数据处理中扮演了重要的角色,能够提高应用程序的性能和扩展性。对于Spark开发者来说,选择合适的分区方式和确定合适的分区数量都是非常关键的。 ### 回答3: Spark分区Spark处理数据时对数据进行划分的一种方式,分区后可以将数据分散在不同节点上并发处理,提高Spark运行效率。Spark分区是RDD中的一个重要概念,也是Spark中最为基础的技术之一。 Spark分区可以说是对RDD数据进行分段存储的一个操作,可以将RDD中的数据分成多个逻辑部分,并将这些部分分配到不同的机器节点上,以便于Spark的并行计算。每个分区相当于Spark中的一个小数据集,它们可以被独立地处理,而且可以同时在不同的机器节点上计算,从而实现真正的并行处理。 Spark分区算法包括三种:Hash分区、Range分区和自定义分区。其中,Hash分区Spark默认的分区算法,通过对数据进行哈希函数的运算,将数据随机分为n个分区。Range分区则是将数据按照键进行有序分区,可以在一定程度上减少Shuffle的复杂度和数据倾斜的问题。自定义分区则是用户可以根据自己的需求来自定义数据分区的方式和数量。 Spark分区可以通过repartition()和coalesce()两个操作来进行重新分区。其中,repartition()操作可以对数据进行哈希分区的重新分区,可以增加或减少数据分区的数量;coalesce()操作则可以对数据进行合并分区的重新分区,只能减少数据分区的数量。 Spark分区数量并不是越多越好,一般来说,分区数量应该与集群的计算资源和数据量相适应,过多或过少的分区都会导致计算效率降低。为了保证Spark的最佳运行效率,我们一般需要根据数据量、访问模式、计算资源等条件来选择合适的分区数量和分区算法。 总之,Spark分区Spark处理数据的一个重要技术,可以提高Spark程序的并发处理能力和计算效率,值得我们深入学习和掌握。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值