cs231n 2018系列笔记(lecture8)

本文档提供了关于GPU加速技术的应用以及PyTorch和TensorFlow等深度学习框架的使用指南。重点介绍了PyTorch的易用性和动态图特性,并分享了相关的在线教程资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

cs231n 2018系列笔记(lecture8)

 

PPT地址

链接:https://pan.baidu.com/s/1u10O1qi2ZzjcZCHaS36XYQ 密码:hzho

主要介绍了硬件方面GPU的提速,软件方面Pytorch和Tensorflow的用法。

作者的观点如下

不过Pytorch现在也有了caffee2静态图后端,tensorflow也有了eager模式动态图,两个更趋向于同化。

我选择Pytorch,Gluon也不错,两者几乎没什么门槛,宣传一波,当初是看到gluon中文教程入门的。

前面是Gluon教程,后面是Pytorch教程。

http://zh.gluon.ai/index.html​zh.gluon.ai

 

Deep Learning Course Forums​forums.fast.ai图标
keras教程:https://github.com/sachinruk/deepschool.io.git

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值