GAN系列:李宏毅老师GAN课程P7——Info GAN,VAE-GAN,BiGAN

本文详细介绍了Info GAN、VAE GAN、BiGAN和Triple GAN等深度学习模型在生成对抗网络中的应用,包括它们的结构、工作原理和优化目标,旨在揭示如何通过这些模型生成更清晰、具有可解释性的图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Info GAN:

在GAN的生成器中,输入一个随机向量,可生成一副图像。向量和图像间的关系可以理解为某种映射,也可以视作向量是图像的特征(尽管可能是隐形的)。为了能找到向量中每个元素/特征和生成图像间的关系,希望元素的改变对图像的影响是有规律可循的,但是一般这种规律是不直观的,如下图所示:

Info GAN就是针对该问题进行的改进:

1. 生成器Generator的输入随机向量z由两部分组成:cz'(都是向量),生成器Generator要学到c中每一个元素对图像生成的影响(c的每一个维度都表示图像的某个特征),z'就是纯随机向量;

2. 训练一个分类器Classifier:根据生成器Generator的输出x预测其对应的生成器Generator的输入中的c

3. 生成器Generator和分类器Classifier构成一个"Auto-encoder",和普通的"Auto-encoder"功能刚好相反:从编码向量生成图像,再解码回向量;

4. 如果仅训练生成器Generator和分类器Classifier,生成器会将c直接附加到输出图像中(导致图像不真,质量有问题),便于分类器Classifier直接还原出c,因此同时训练判别器监督生成图像的真实性。

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值