
python-pydantic
文章平均质量分 90
lvjesus
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
040-企业级项目实战
企业级电商平台项目实战摘要 本章通过一个完整的电商平台项目,展示Pydantic在企业级应用中的实践。项目采用微服务架构,包含8个核心服务: 系统架构:包含API网关、用户服务、商品服务、订单服务等模块 技术栈:整合PostgreSQL、Redis、Elasticsearch数据库和RabbitMQ消息队列 配置管理:使用Pydantic模型定义服务配置、数据库连接和消息队列参数 扩展性设计:支持服务副本扩展、资源限制和健康检查 环境配置:区分生产环境参数,包含认证信息和连接池配置 每个服务都明确定义了依赖原创 2025-07-31 22:27:23 · 451 阅读 · 0 评论 -
039-生产环境部署
本文摘要:本章详细介绍了Pydantic应用在生产环境中的部署方案,重点关注容器化部署和配置管理。通过Dockerfile示例展示了多阶段构建过程、安全配置和健康检查机制,同时提供了Gunicorn的详细配置类,包含性能调优、日志记录和安全限制等生产级参数。docker-compose.yml文件则展示了服务编排,包括数据库连接、环境变量配置、健康检查以及日志和文件存储的持久化方案。整套部署方案兼顾了性能、安全性和可维护性,为Pydantic应用的生产部署提供了完整参考。原创 2025-07-31 22:24:17 · 753 阅读 · 0 评论 -
038-测试策略与Mock
本文摘要: Pydantic应用测试策略指南重点介绍了构建全面测试体系的方法。文章从测试基础架构入手,详细讲解了如何配置测试环境,包括测试fixture、数据库测试和HTTP客户端设置。特别强调了Mock技术的应用,如模拟日期时间、UUID生成和服务层接口。测试数据工厂部分展示了利用工厂模式批量生成测试数据的技巧,包括用户资料、订单等复杂模型的构造。整个测试体系覆盖了单元测试、集成测试、API测试和性能测试等多个维度,为Pydantic应用提供了完整的质量保障方案。原创 2025-07-30 21:07:44 · 396 阅读 · 0 评论 -
037-微服务数据传输
在微服务架构中,服务间的数据传输是核心挑战之一。Pydantic提供了强大的数据验证和序列化能力,是构建可靠微服务通信的理想选择。本章将深入探讨如何使用Pydantic构建高效、安全的微服务数据传输系统。1.2 服务间数据模型1.3 事件驱动架构🔧 消息队列集成2.1 RabbitMQ集成2.2 服务间通信示例📝 本章总结本章深入探讨了微服务数据传输的设计和实现,涵盖了以下核心内容:下一步学习: 在下一章中,我们将学习测试策略与Mock,探索如何为Pydantic应用构建完整的测试原创 2025-07-30 21:05:02 · 660 阅读 · 0 评论 -
036-数据库ORM集成
📝 摘要:Pydantic与ORM框架集成 本章详细介绍了如何将Pydantic与主流ORM框架(SQLAlchemy、Tortoise ORM、Peewee)集成,构建类型安全的数据访问层。主要内容包括: 环境配置 - 列出了必要的依赖包版本 SQLAlchemy集成 - 展示了完整的模型定义示例,包含: 用户/角色多对多关系 枚举类型字段处理 时间戳自动管理 JSON字段支持 级联关系配置 核心特性: 模型转换和映射技术 异步数据访问实现 通用数据访问层设计 ORM性能优化技巧 通过本章学习,开发者可原创 2025-07-30 21:04:29 · 281 阅读 · 0 评论 -
035-API数据验证
import re"""信用卡验证器"""number: str = Field(..., description="信用卡号")expiry_month: int = Field(..., ge=1, le=12, description="过期月份")expiry_year: int = Field(..., description="过期年份")cvv: str = Field(..., min_length=3, max_length=4, description="CVV码")原创 2025-07-30 21:03:14 · 801 阅读 · 0 评论 -
035-API数据验证
import re"""信用卡验证器"""number: str = Field(..., description="信用卡号")expiry_month: int = Field(..., ge=1, le=12, description="过期月份")expiry_year: int = Field(..., description="过期年份")cvv: str = Field(..., min_length=3, max_length=4, description="CVV码")原创 2025-07-30 21:01:53 · 734 阅读 · 0 评论 -
034-配置管理系统
本文介绍了使用Pydantic构建企业级配置管理系统的方法。主要内容包括:通过pydantic-settings处理多种配置源(环境变量、配置文件等),配置验证和类型转换,以及构建分层配置系统。文章提供了基础配置类示例,包含应用设置、服务器配置、日志和安全配置等核心功能,并展示了环境枚举验证、字段验证器、生产环境检查等实用功能。同时还包含了数据库配置子模块,演示了连接池管理等高级配置场景。该系统支持热更新和动态加载,适合不同环境(开发、测试、生产)的配置管理需求。原创 2025-07-30 21:01:12 · 819 阅读 · 0 评论 -
033-SQLAlchemy模型集成
SQLAlchemy与Pydantic集成实践 本文介绍了如何将SQLAlchemy ORM框架与Pydantic数据验证库进行深度集成,构建高效的数据访问层。主要内容包括: 环境配置:详细说明了依赖安装清单和数据库连接设置,支持同步/异步操作,包含连接池优化参数 模型设计:提供了基础模型架构,整合了UUID主键、时间戳等通用字段,并实现了ORM与Pydantic模型的转换机制 核心功能: 支持从ORM对象自动转换为Pydantic模型 内置分页查询功能 同步/异步数据库会话管理 完善的字段验证和错误处理原创 2025-07-30 20:59:13 · 677 阅读 · 0 评论 -
032-Django集成应用
Django与Pydantic集成应用摘要 本章介绍如何在Django项目中集成Pydantic框架,利用其强大的数据验证和类型安全功能。主要内容包括: 项目搭建:通过Django命令创建项目结构,配置依赖项(Pydantic、DRF、Celery等) 配置管理:使用Pydantic Settings管理Django配置,支持环境变量和类型提示 核心功能: 数据库和Redis连接配置 认证系统(JWT)和安全设置 文件上传和API限流 日志记录和错误处理 集成方案: 自定义中间件处理Pydantic验证 D原创 2025-07-30 20:57:56 · 844 阅读 · 0 评论 -
031-FastAPI集成实战
本文介绍了FastAPI与Pydantic的深度集成实践。主要内容包括:1) 搭建FastAPI项目环境,配置CORS、日志和安全认证;2) 设计基础数据模型,包括实体基类、统一响应模型和分页模型;3) 实现用户管理模块,定义用户角色、状态枚举和详细用户资料模型。文章展示了如何利用Pydantic的强大功能构建类型安全的企业级API,特别强调了数据验证、自动文档生成和配置管理。通过代码示例详细说明了模型的字段定义、验证器和配置选项。原创 2025-07-30 20:56:54 · 237 阅读 · 0 评论 -
030-高级特性综合应用
本文介绍了Pydantic高级特性在企业级数据处理平台中的综合应用。系统架构设计包含配置管理、数据处理、监控等多个模块,采用多线程/进程处理机制,支持多种数据格式。关键组件包括: 系统状态管理(SystemStatus枚举) 优先级处理机制(ProcessingPriority) 配置管理器(ConfigurationManager)实现动态加载和监听变更 系统指标监控(SystemMetrics) 支持JSON/XML/CSV等多种数据格式处理 通过Pydantic的泛型模型、动态模型创建和验证等高级特性原创 2025-07-30 20:55:02 · 848 阅读 · 0 评论 -
029-并发与异步处理
本章深入探讨了Pydantic中的并发与异步处理技术,重点包括:1)异步验证器的实现,通过AsyncValidator类演示了邮箱、用户名和手机号的异步验证流程;2)结合同步和异步验证的AsyncUserModel模型,展示了如何在Pydantic模型中集成异步验证方法;3)批量异步验证器BatchAsyncValidator的设计,支持并发处理多个用户数据验证。这些技术可显著提升应用性能,特别是在需要外部API调用或数据库查询的验证场景中。代码示例展示了完整的异步上下文管理、并发任务处理和错误处理机制,为原创 2025-07-30 20:54:00 · 543 阅读 · 0 评论 -
028-内存管理与缓存
📝 文章摘要 本文深入探讨了Python中Pydantic应用的内存管理与缓存策略。主要内容包括内存监控工具的实现(如MemoryMonitor类)、对象追踪技术(ObjectTracker类)以及内存泄漏检测方法。文章提供了实用的代码示例,展示了如何使用psutil、weakref等库进行内存分析,帮助开发者理解Python对象生命周期、识别内存泄漏模式,并建立有效的内存使用监控机制。这些技术对于构建高性能Pydantic应用至关重要,能显著提升大型数据处理场景下的应用性能。原创 2025-07-30 20:52:56 · 875 阅读 · 0 评论 -
027-性能优化技巧
Pydantic性能优化技巧摘要 本文介绍Pydantic模型性能优化的关键方法。内容涵盖性能分析工具(计时器、内存和CPU分析器)、基础性能测试框架,以及简单和复杂模型的创建性能对比。通过装饰器实现对函数执行时间、内存消耗和CPU用量的自动测量,帮助开发者识别性能瓶颈。测试案例展示了SimpleModel(基本字段)和ComplexModel(含UUID、验证器、复杂字段类型)在不同规模下的性能表现,为后续针对性优化提供基准数据。优化方向包括验证优化、序列化加速、内存管理和并发处理等。原创 2025-07-30 20:52:00 · 586 阅读 · 0 评论 -
026-序列化器与反序列化器
本文介绍了Pydantic框架中序列化与反序列化的核心概念和实现方法。主要内容包括: 基础序列化方法 使用dict()和json()方法转换模型对象 处理嵌套对象和复杂数据类型 配置自定义JSON编码器处理特殊类型 高级序列化功能 字段包含/排除选项控制输出内容 处理默认值和未设置字段 自定义序列化器实现 定义Serializer接口协议 创建基础抽象类 实现具体JSON序列化器 通过示例代码展示了如何为任务管理系统创建模型并实现灵活的序列化功能,包括枚举类型、UUID、日期时间等特殊类型的处理。原创 2025-07-30 20:51:12 · 616 阅读 · 0 评论 -
025-自定义字段类型
Pydantic自定义字段类型开发指南 本文介绍了Pydantic框架中创建自定义字段类型的核心方法。主要内容包括: 基础概念:通过Color类示例展示自定义类型开发,包含RGB/HEX格式转换、验证逻辑和序列化方法。 实现要点: 使用__get_validators__方法定义验证器链 实现validate方法处理多种输入格式(对象、字符串、列表) 支持常见颜色格式(十六进制、RGB/RGBA字符串、预定义颜色名) 验证机制: 内置RGB值(0-255)和Alpha值(0-1.0)验证 多种输入格式的自动原创 2025-07-30 20:48:20 · 674 阅读 · 0 评论 -
024-插件系统与扩展
本文介绍了基于Pydantic的插件系统设计与实现。主要内容包括:插件系统的基础架构设计,使用Pydantic定义插件信息模型(PluginInfo)和插件状态枚举(PluginStatus);通过Protocol定义插件接口规范,包含初始化、执行和清理等核心方法;提供抽象基类BasePlugin实现通用逻辑;实现插件注册表(PluginRegistry)管理插件的注册、发现和依赖检查。文章采用类型注解和运行时检查确保插件实现的规范性,展示了如何构建可扩展的数据处理架构,支持不同类型插件(验证器、转换器等)原创 2025-07-29 22:48:36 · 629 阅读 · 0 评论 -
023-模型工厂与构建器模式
本章介绍了在Pydantic中实现工厂模式和构建器模式的设计方法。主要内容包括: 工厂模式实现:通过UserFactory类创建不同类型的用户模型(AdminUser、RegularUser等),支持动态注册新用户类型和从字典创建用户实例。 模型设计: 定义BaseUser基类包含公共字段 实现四种具体用户模型,各自具有特有属性和默认值 使用Field进行字段验证和元数据描述 核心功能: 通过user_type参数区分不同用户类型 内置输入验证(如邮箱格式校验) 自动设置默认值和初始化逻辑 这些设计模式使复原创 2025-07-29 22:47:25 · 815 阅读 · 0 评论 -
022-动态模型创建
摘要: 本章介绍了Pydantic的动态模型创建功能,通过create_model方法实现运行时模型构建。主要内容包括:基础动态模型创建(支持条件性字段添加)、动态验证器集成(如邮箱、电话格式验证)、基于配置的模型生成(使用枚举定义字段类型)。这些技术适用于需要灵活数据结构的场景,如动态表单、API接口适配等,展示了如何通过编程方式构建强类型的数据模型并保持类型安全验证。原创 2025-07-29 22:46:41 · 637 阅读 · 0 评论 -
021-泛型模型与类型变量
📝 文章摘要 Pydantic的泛型模型功能允许创建可重用的类型安全模型模板,通过TypeVar和Generic实现。文章介绍了基础泛型模型(单类型和多类型变量)的定义和使用方法,并展示了两个实际应用场景:1) 通用API响应模型,可适应不同类型的数据;2) 分页响应模型,支持任意数据类型的列表分页。这些技术提高了代码的灵活性和复用性,同时保持了类型安全性。示例代码演示了如何定义泛型模型、添加验证逻辑以及在具体场景中的实际应用。原创 2025-07-29 22:34:22 · 843 阅读 · 0 评论 -
020-核心功能综合实战
本文介绍了基于Pydantic的企业级智能项目管理系统设计与实现,涵盖用户管理、项目管理和任务分配等核心功能。系统采用模块化架构,包括用户管理(认证、权限、配置)、项目管理(创建、状态管理)、任务管理(分配、跟踪)和文件处理等模块。文章详细展示了Pydantic数据模型的应用,包括基础配置模型、用户角色枚举、用户资料验证、项目管理状态等核心组件,并提供了完整的模型代码示例。该系统综合运用了Pydantic的字段验证、自定义验证器、枚举类型等特性,体现了企业级应用开发中的最佳实践。原创 2025-07-29 22:33:34 · 858 阅读 · 0 评论 -
020-核心功能综合实战
本文介绍了基于Pydantic的企业级智能项目管理系统设计与实现,涵盖用户管理、项目管理和任务分配等核心功能。系统采用模块化架构,包括用户管理(认证、权限、配置)、项目管理(创建、状态管理)、任务管理(分配、跟踪)和文件处理等模块。文章详细展示了Pydantic数据模型的应用,包括基础配置模型、用户角色枚举、用户资料验证、项目管理状态等核心组件,并提供了完整的模型代码示例。该系统综合运用了Pydantic的字段验证、自定义验证器、枚举类型等特性,体现了企业级应用开发中的最佳实践。原创 2025-07-29 22:31:33 · 543 阅读 · 0 评论 -
019-数据导出与格式化
本文介绍了Pydantic的数据导出与格式化功能,主要包括三种导出方式:字典、JSON字符串和格式化JSON输出。通过示例展示了如何控制导出选项,包括字段排除、包含特定字段、排除未设置值等。文章详细讲解了字段级和模型级自定义序列化器的实现方法,以及如何处理复杂嵌套数据结构的导出。最后还提供了批量数据处理和性能优化的技巧,帮助开发者高效地实现数据转换与外部系统对接。原创 2025-07-29 22:30:40 · 685 阅读 · 0 评论 -
018-JSON Schema生成
本文介绍了Pydantic自动生成JSON Schema的功能,包括基础概念、生成方法和实际应用。JSON Schema作为数据验证规范,能够定义JSON数据的结构、类型和约束条件。Pydantic模型可以自动转换为标准JSON Schema,支持简单模型和嵌套模型的生成,并可通过Config类进行额外配置。生成的Schema可用于API文档生成、前端表单验证、数据交换等场景。文章还展示了如何从Pydantic模型生成包含字段描述、约束条件和示例的完整JSON Schema,以及如何处理嵌套数据结构。原创 2025-07-29 22:29:41 · 595 阅读 · 0 评论 -
017-枚举与常量管理
本章深入探讨了Pydantic中的枚举(Enum)管理,涵盖了基础枚举、字符串枚举、整数枚举等核心概念。内容从枚举定义、验证机制到序列化应用,展示了如何在数据模型中安全使用枚举来确保类型安全和数据一致性。通过实际代码示例演示了枚举的高级用法,包括多语言支持、权限管理等实用场景,并提供了性能优化建议和常见问题解答。学习重点包括枚举的验证处理、值转换技巧以及在实际项目中的应用模式,帮助开发者构建更健壮的数据模型。原创 2025-07-29 22:28:55 · 578 阅读 · 0 评论 -
016-文件路径与URL处理
摘要: 本章介绍Pydantic框架在文件路径和URL处理方面的功能,包含以下核心内容: 文件路径处理: 使用FilePath和DirectoryPath验证存在性的路径 自定义路径验证逻辑(文件格式、权限、大小等) 路径类型转换与安全验证 URL处理: 内置HttpUrl和AnyUrl类型验证 支持多种网络协议识别 邮箱地址验证功能 实践应用: 配置文件路径验证 可执行文件权限检查 网络资源URL标准化 通过类型系统和验证器,Pydantic为文件和URL处理提供了类型安全且灵活的解决方案。原创 2025-07-29 22:27:59 · 993 阅读 · 0 评论 -
015-日期时间处理
本文介绍了使用Pydantic处理日期时间数据的核心方法。主要内容包括: 基础日期时间类型支持(datetime、date、time、timedelta) 多种日期时间格式的自动解析能力 时区处理机制与时区转换功能 自定义验证器的实现方法 时间计算和业务逻辑应用 Pydantic提供了强大的日期时间处理能力,支持自动格式转换、时区感知和验证,能够有效处理各种业务场景下的时间数据验证需求。通过自定义验证器,可以进一步扩展功能以满足特定业务规则。原创 2025-07-29 22:26:35 · 900 阅读 · 0 评论 -
014-复杂数据结构处理
摘要 本章深入讲解了Pydantic处理复杂数据结构的方法,包括: 嵌套模型:实现一对一、一对多和多层嵌套的数据关系 循环引用:通过前向引用解决相互引用问题 动态数据结构:支持Union类型、Any类型和动态字段 泛型模型:创建可重用、类型安全的泛型基类 递归结构:处理树形、图形等自引用数据结构 示例展示了联系人系统、商品订单等业务场景的实现,涵盖模型定义、数据验证和复杂关系处理。通过Field配置、自定义方法和属性计算,实现灵活的数据结构建模。原创 2025-07-29 22:25:30 · 790 阅读 · 0 评论 -
013-字段类型详解
本文全面介绍了Pydantic支持的字段类型体系,包括基础数据类型、容器类型、特殊类型、约束类型和自定义类型。重点讲解了字符串、数值、布尔和字节等基础类型的使用方法,展示了如何通过Field进行字段约束(如长度限制、数值范围等),并提供了完整的代码示例演示类型验证过程。文章采用可视化图表展示类型体系结构,帮助开发者快速掌握Pydantic类型系统的核心概念和实际应用技巧。原创 2025-07-29 22:24:36 · 894 阅读 · 0 评论 -
012-根验证器与模型验证
📝 摘要 本章详细介绍了Pydantic中的根验证器与模型验证机制。通过model_validator装饰器,开发者可以: 在模型级别实现跨字段验证(before模式) 执行复杂业务规则检查(after模式) 进行数据预处理和转换 处理JSON字符串等非结构化输入 关键特性包括: 验证器层次结构(字段级→模型级) 两种工作模式(before/after字段验证) 数据清理和标准化功能 业务逻辑验证(如年龄限制、日期一致性等) 示例代码展示了用户资料和订单模型的完整验证流程,演示了字段验证器与模型验证器的协原创 2025-07-29 22:23:31 · 828 阅读 · 0 评论 -
011-自定义验证器详解
Pydantic自定义验证器摘要 Pydantic的自定义验证器机制允许开发者实现复杂的数据验证逻辑。主要验证器类型包括: 字段验证器:使用@field_validator装饰单个字段,支持三种模式: before:类型转换前执行 after:类型转换后执行(默认) wrap:完全控制验证流程 多字段验证: 同一验证器可验证多个字段 验证器可访问其他字段值进行交叉验证 支持字段依赖关系检查 验证器功能: 数据清理和格式化 复杂业务规则验证 错误信息定制 数据转换和标准化 验证器是Pydantic数据验证的核原创 2025-07-29 22:21:58 · 657 阅读 · 0 评论 -
010-基础实战项目
本章介绍了一个基于Pydantic的用户管理系统实战项目,内容涵盖数据模型设计、业务逻辑实现和API接口开发。项目采用分层架构,包含模型层(用户、认证、响应模型)、服务层(用户和认证业务逻辑)、API层(用户和认证接口)以及配置管理。重点展示了用户模型的设计,包括基础用户模型(BaseUser)、创建用户模型(UserCreate)、更新模型(UserUpdate)和完整用户模型(User),通过Field字段验证、自定义验证器和枚举类型确保数据完整性。项目还提供了认证模型设计示例,包括登录请求和令牌数据模原创 2025-07-28 22:45:50 · 842 阅读 · 0 评论 -
009-字段别名与映射
Pydantic字段别名与映射技术摘要 本文介绍了Pydantic中的字段别名机制,主要内容包括: 字段别名基础:通过Field(alias=...)配置字段别名,实现外部数据与内部模型字段的映射 别名配置方法:展示Field级别的多种别名配置方式,包括简单别名、验证别名、序列化别名等 别名生成器:提供字符串转换函数将蛇形命名转为驼峰、短横线和帕斯卡命名格式 实际应用:演示如何通过别名处理不同命名风格的数据,支持双向转换(输入/输出) 关键特性:支持allow_population_by_field_nam原创 2025-07-28 22:42:19 · 986 阅读 · 0 评论 -
008-配置类Config详解
Pydantic Config类详解摘要 Pydantic的Config类是模型的核心配置中心,提供多种配置选项: 基础配置:包括验证设置(validate_assignment)、枚举处理(use_enum_values)和JSON编码器(json_encoders)等 验证模式:支持严格(forbid额外字段)、宽松(allow额外字段)和忽略(ignore额外字段)三种验证策略 字段控制:可配置字段别名、字符串处理(自动去除空格)和大小写敏感性 性能优化:通过allow_reuse和copy_on_m原创 2025-07-28 22:41:02 · 755 阅读 · 0 评论 -
007-错误处理与异常管理
本文介绍了Pydantic的错误处理与异常管理机制,主要内容包括:1) ValidationError的基本使用方法及其错误信息结构;2) 通过Field级别和全局配置自定义错误消息;3) 使用validator进行数据验证和错误处理。文章通过代码示例演示了如何处理缺失字段、类型错误和自定义验证错误,并展示了如何分析错误信息的详细结构。同时还介绍了如何配置全局错误消息模板来统一错误提示风格,为开发者提供了一套完整的Pydantic错误处理解决方案。原创 2025-07-28 22:40:23 · 900 阅读 · 0 评论 -
006-数据转换与序列化
摘要 本文介绍了Pydantic数据转换与序列化的核心概念和实用技巧。主要内容包括:1) Pydantic的数据转换机制,通过BaseModel和validator实现自动类型转换;2) 序列化与反序列化操作,涵盖字典、JSON等格式的转换及自定义配置;3) 复杂数据结构的处理,如嵌套模型、前向引用等。文章通过大量代码示例演示了如何利用Pydantic的强大功能实现安全高效的数据转换,并介绍了性能优化策略如字段排除、别名配置等。这些技术可广泛应用于API开发、数据验证和系统集成场景。原创 2025-07-28 22:39:30 · 673 阅读 · 0 评论 -
005-模型继承与组合
本文介绍了Pydantic模型的继承与组合机制。主要内容包括: 模型继承基础 通过继承BaseModel实现模型复用 字段覆盖与扩展方法 使用Field配置字段约束 添加自定义验证器 模型组合方式 嵌套模型构建复杂数据结构 通过Optional实现可选字段 示例包含地址、联系信息等常见业务模型 支持多级嵌套组合 这些技术可以帮助开发者构建可扩展、可维护的数据模型架构,实现业务逻辑的有效封装。文中提供了用户管理、产品分类等实用示例代码,展示了Pydantic在数据验证和模型组织方面的强大功能。原创 2025-07-28 22:38:32 · 228 阅读 · 0 评论 -
005-模型继承与组合
本文介绍了Pydantic模型的继承与组合机制。主要内容包括: 模型继承基础 通过继承BaseModel实现模型复用 字段覆盖与扩展方法 使用Field配置字段约束 添加自定义验证器 模型组合方式 嵌套模型构建复杂数据结构 通过Optional实现可选字段 示例包含地址、联系信息等常见业务模型 支持多级嵌套组合 这些技术可以帮助开发者构建可扩展、可维护的数据模型架构,实现业务逻辑的有效封装。文中提供了用户管理、产品分类等实用示例代码,展示了Pydantic在数据验证和模型组织方面的强大功能。原创 2025-07-28 22:37:06 · 342 阅读 · 0 评论 -
004-字段验证与约束
摘要 本章介绍了Pydantic中的字段验证与约束机制,主要内容包括: Field函数详解:展示基础参数(min_length, max_length等)和高级参数(alias, exclude等)的使用,以及如何设置默认值和约束条件。 自定义验证器: 字段验证器:通过@field_validator实现特定字段的验证逻辑 根验证器:使用@model_validator验证跨字段关系和复杂业务逻辑 验证错误处理:演示如何捕获和处理ValidationError,提取详细的错误信息。 实际应用:包含用户注册、原创 2025-07-28 22:36:17 · 316 阅读 · 0 评论