- 博客(6)
- 资源 (3)
- 收藏
- 关注
原创 工业互联网平台发展趋势:迈向智能化与高效化的新时代
工业互联网平台作为推动制造业转型升级的关键力量,正通过标准化通讯采集器、统一门户、打通管理流程、行业应用深度拓展及技术创新等多方面发展,展现出前所未有的活力与潜力。标准化通讯采集器为设备数据接入提供高效解决方案,统一门户打破信息孤岛,提升运营效率。工业互联网平台还通过打通管理流程,构建完整管理工作流,实现全流程管理。行业应用的深度拓展,如水泥行业APPs,为企业提供便捷高效的管理工具。海螺水泥智能工厂作为典型案例,展示了工业互联网平台在提升运营效率和经济效益方面的显著成效。未来,随着5G、AI等技术的不断发
2025-05-14 14:15:53
1022
原创 石化行业智能工厂建设实践与思考
智能制造正成为全球制造业转型的核心趋势,各国纷纷制定战略推动制造业向智能化、高端化发展。中国通过《中国制造2025》和“互联网+”行动计划,推动制造业智能化转型,建设智能工厂和数字化车间。美国通过“工业互联网”战略,推动传统工业与互联网深度融合,提升制造业效率。德国则通过“工业4.0”战略,构建信息物理系统,实现制造业全流程智能化。企业如巴斯夫、霍尼韦尔和BP等也在积极实践智能制造,通过技术创新提升生产效率和竞争力。石化行业作为流程型制造业,正通过智能工厂建设推动行业智能化转型,提升生产效率、降低成本、提高
2025-05-09 15:50:36
1201
转载 “工业互联网+危化安全生产”工艺生产报警优化管理系统 建设应用指南
多维度统计分析内容包括但不限于报 警次数分析、报警时长分析、报警泛滥分析、报警类型分析、 报警优先级分析、时序报警分析、因果报警分析、抖动报警分 析、联锁报警统计、TopN 报警分析等。系统应支持 报警审计功能,定期检查DCS 报警限与报警设置台账一致性、 未经授权的报警属性修改、报警抑制状态等。针对不同类型、不同厂家过程控制系统的报警数据和通讯 协议,应具备将报警事件解析为报警点位、报警开始、报警确 认、报警结束、报警类型、报警装置或设备名称等信息并整合 为完整的报警记录功能,形成报警主数据库。
2025-05-09 15:10:50
596
原创 利用MATLAB实现预测性维护、故障诊断、生命周期预测
数据采集是预测性维护的基础。预测性维护是一种基于数据分析和机器学习技术的维护策略,旨在通过监测设备的实时运行状态,预测潜在故障的发生时间,从而实现精准的设备维护。与被动式维护(在设备故障后才进行修复)和预防性维护(按照固定周期进行维护)不同,预测性维护能够根据设备的实际状况动态调整维护计划,避免不必要的停机和维修成本。预测性维护的核心在于利用传感器收集设备的运行数据(如振动、温度、压力等),并通过先进的数据分析技术(如机器学习、统计分析等)对这些数据进行处理和建模,以识别设备状态的变化趋势和潜在故障模式。
2025-05-08 17:33:19
1259
原创 某某工业区智慧园区建设的全面规划与实施路径
智慧园区的建设离不开先进技术的支撑。通过封闭管理与交通优化、项目建设管理、安环管理与应急消防公安一体化、能源管理与碳资产管理、公用工程管理、产业集群供应链管理、基于政企协同的公共服务、园区数据管理与工业互联网平台建设、统一的IT基础设施建设以及智慧园区运营管理等多方面的建设,某某工业区将实现从传统园区向智慧园区的华丽转身。通过建立完善的业务运行机制,涵盖园区部门、管理中心和企业之间的协同合作,采用统一建设、统一管理、统一运维、统一运营的模式,逐步构建规范化的运营管理体系,提升智慧园区的整体管理水平。
2025-05-07 16:58:15
660
原创 AI赋能设备全生命周期管理:智能化转型的必由之路
数字孪生是指通过数字化手段构建一个与物理设备相对应的虚拟模型,该模型可以实时反映物理设备的状态和行为,并通过与物理设备的交互,实现对设备的优化和控制。通过机器学习和深度学习算法的应用,AI可以实现设备全生命周期管理中的智能化决策和优化。同时,AI还可以通过对设备故障数据的分析和挖掘,优化设备的维护策略,实现从传统的预防性维护向基于状态的维护(CBM)的转变,从而降低设备的维护成本。此外,AI还可以通过对设备运行数据的分析和优化,调整设备的运行参数,提高设备的运行效率和能源利用效率,降低设备的运营成本。
2025-05-07 16:16:51
1249
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人