动手学深度学习笔记|3.2线性回归的从零开始实现(附课后习题答案)


来源: myluster的github笔记,求个star说是

线性回归的从零开始实现

import random
import torch
import matplotlib.pyplot as plt
import numpy as np

生成数据集

def synthetic_data(w,b,num_examples):#@save
    #有@save标记的函数是以后课程也需要的函数
    #num_examples是需要生成的数据量
    X=torch.normal(0,1,(num_examples,len(w)))#随机生成X值
    y=torch.matmul(X,w)+b#点乘
    y+=torch.normal(0,0.01,y.shape)#加入噪声
    return X,y.reshape(-1,1)#y原本为1D向量,需要配合X转换为2D向量
  • X 的形状是 (num_examples, len(w))。
  • w 的形状是 (len(w),)。
  • torch.matmul(X, w) 的结果是一个 1D 张量(向量),形状为 (num_examples,)。
  • 加上标量 b 后,y 的形状仍然是 (num_examples,)
true_w=torch.tensor([2,-3.4])
true_b=4.2
features,labels=synthetic_data(true_w,true_b,1000)
print('features:', features[0],'\nlabel:', labels[0])

                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值