SMO算法

1 SMO概念

SVM把原始最优化问题转化成了其对偶问题,因为对偶问题是一个凸二次规划问题,这样的凸二次规划问题具有全局最优解。如下:

C是惩罚系数。上述问题要求解N个参数,其他参数均为已知。有多种算法可对上述问题求解,但复杂度很大。

SMO (序列最小最优化算法) 可高效求解上述问题,把原始求解N个参数二次规划问题分解成多个子二次规划问题,分别求解,每个子问题只需求解2个参数。节省时间成本和降低内存需求。每次启发式选择两个变量进行优化,不断循环,直到达到函数最优值。

2 SMO原理分析

2.1 算法思想

SMO算法的中心思想就是每次选出两个lambda进行优化 (之所以是两个是因为lambda的约束条件决定了其与标签乘积的累和等于0,因此必须一次同时优化两个,否则会破坏约束条件),然后固定其他的lambda值。重复此过程,直到达到某个终止条件,程序退出,并得到我们需要的优化结果。

https://www.jianshu.com/p/eef51f939ace

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值